Application of high-performance computing for bubble simulations in sonochemistry

Author: Dániel Nagy Co-author: Dr. Ferenc Hegedűs (BME-HDS)

GPU Day 2022

21 June 2022

Nemzeti Kutatási, Fejlesztési És Innovációs Hivatal

Overview

Introduction

- Sonochemistry
- Introduction of the problem
- 2D axisymmetric

5

- 3D simulations
- Computational aspects
- The problem
- Scaling
- Results of the simulations
 - Surface mode simulations
 - Bubble break-up

What is sonochemistry?

Essence

Increasing the yield of chemical processes with ultrasound excitation

What is sonochemistry?

Essence

Increasing the yield of chemical processes with ultrasound excitation

Potential applications

- Production of nano-metal particles
- Chemical technologies with reduced pollution

What is sonochemistry?

Essence

Increasing the yield of chemical processes with ultrasound excitation

Potential applications

- Production of nano-metal particles
- Chemical technologies with reduced pollution

Problems

- Achieving industrial size
- Simulating sonochemical reactors with millions of bubbles

Goal: observing previously unmodeled phenomena using CFD (e.g. bubble break-up)

- Bubbles in the liquid
- Oscillations due to excitation

- Bubbles in the liquid
- Oscillations due to excitation
- Bubble collapse
 - Pressure and temp. increase
 - Inducing chemical reactions
 - Symmetry loss

- Bubbles in the liquid
- Oscillations due to excitation
- Bubble collapse
 - Pressure and temp. increase
 - Inducing chemical reactions
 - Symmetry loss
- Small oscillations

- Bubbles in the liquid
- Oscillations due to excitation
- Bubble collapse
 - Pressure and temp. increase
 - Inducing chemical reactions
 - Symmetry loss
- Small oscillations

Difficulties of the simulation

Problems

- Two compressible phase
- Rapid change of the phase boundary
- Scale difference:
 - $\bullet~$ bubble $\approx 1 \times 10^{-5}\,m$
 - domain $\approx 1 \times 10^{-2} \, \text{m}$
- High pressure amplitudes $p_A = 0.5 \text{ bar} 2 \text{ bar}$

Difficulties of the simulation

Problems

- Two compressible phase
- Rapid change of the phase boundary
- Scale difference:
 - $\bullet~$ bubble $\approx 1 \times 10^{-5}\,m$
 - domain $\approx 1 \times 10^{-2} \, m$
- High pressure amplitudes $p_A = 0.5$ bar 2 bar

ALPACA (CFD solver)

- Compressible multiphase flows
- *Level-set* method to track the phase boundary
- Adaptive meshing using *multiresolution*
- Large computational requirement
 → supercomputers
- MPI-parallelized C++ code
- Open-source

ALPACA available at https://gitlab.lrz.de/nanoshock/ALPACA Developed by the Nanoshock research group (Technical University of Münich)

Overview

2

Introduction

- Sonochemistry
- Introduction of the problem

2D axisymmetric

- 3D simulations
- 4 Computational aspects
 - The problem
 - Scaling
- 5 Results of the simulations
 - Surface mode simulations
 - Bubble break-up

Summary

Model

Axisymmetric simulation

Dániel Nagy, Ferenc Hegedűs

Model

Axisymmetric simulation

Important parameters

- Equilibrium bubble radius R₀
- Excitation frequency f
- Excitation pressure amplitude *p*_A

Keller-Miksis equation

- Describes a spherical bubble in acoustic field
- 2nd order ODE for the bubble radius R(t)
- Used for validation

Comparison with the Keller-Miksis equation

- Parameters: $R_0 = 20 \,\mu\text{m}, \, p_A = 0.2 \,\text{bar}, \, f = 130 \,\text{kHz}$
- Dimensionless time $\tau = t \cdot f$
- Good agreement

Model and results

Model in 3D

- West: Time-dependent pressure
- Only the bubble and the immediate neighbourhood

Comparison with the Keller-Miksis equation

Overview

Introduction

- Sonochemistry
- Introduction of the problem
- 2D axisymmetric
- 3D simulations

Computational aspects

- The problem
- Scaling
- 5 Results of the simulations
 - Surface mode simulations
 - Bubble break-up

Summary

Computational problem

2D axisymmetric

- Number of cells: $10^4 10^5$
- Step size: $\approx 1 \times 10^{-10}$ s
- Number of steps: $\approx 10^6$
- Wall time per step: 50 500 ms
- Runtime: 0.5 5 days

Computational problem

2D axisymmetric

- Number of cells: $10^4 10^5$
- Step size: $\approx 1 \times 10^{-10}$ s
- Number of steps: $\approx 10^6$
- Wall time per step: 50 500 ms
- Runtime: 0.5 5 days

Full 3D

- Number of cells: $10^6 10^7$
- Step size: $\approx 1 \times 10^{-10}$ s
- Number of steps: $\approx 10^6$
- Wall time per step: 500 5000 ms
- Runtime: 5 50 days

Exact values depend on the parameters, resolution and compute configuration

The problem

- Number of cells is not too large (parallelization is not too efficient)
- More than a million time step is necessary

Scaling

Amdahl's law

$$S(n)=\frac{1}{(1-p)+\frac{p}{n}}$$

- n: number of CPU cores
- S: theoretical speedup
- p: parallel proportion

n

SUPERMUC-NG (26.9 PFlop/s)

- Cores/node: 48
- Max. nodes (micro project): 16 (*n*_{max} = 768)
- Maximum run time of a single job: 48 h

Strong scaling of ALPACA

Strong scaling

- What is the speedup if the compute resources are increased?
- Described by Amdahl's law

n

The simulated bubble

Parameters

 $p_A = 0.3 \, \text{bar}, \quad f = 192 \, \text{kHz}, R_0 = 20 \, \mu \text{m}$

Mesh

 $N_{\text{bubble}} = 0.56 \cdot 10^6, \quad N_{\text{cell}} = 6.23 \cdot 10^6$

- Time step $\Delta t \approx 1 imes 10^{-10} \, {
 m s.}$ $t_{
 m max} = 8.7 imes 10^{-6} \, {
 m s}$
- Execution
 - $n = 192, T_{run} = 36 h$

$$T_{CPU} = n \cdot T_{run} pprox 7000 \, h$$

Overview

Introduction

- Sonochemistry
- Introduction of the problem
- 2D axisymmetric
- 3D simulations
- 4 Computational aspects
 - The problem
 - Scaling

Results of the simulations

- Surface mode simulations
- Bubble break-up

Summary

5

Surface modes

Depending on the parameters different axisymmetric shapes are stable. Example for a $R_E = 20 \,\mu\text{m}$ bubble:

Simulation results

- At least 100 cells along the diameter
- Mode 3 is initialized with a horizontal asymmetry

 M_2 at f = 105 kHz

 M_3 at f = 192 kHz

 M_4 at f = 288 kHz

Break-up of bubbles

- Amplitude of a surface oscillation becomes to large
- Requires high enough pressure amplitude

Bubble break-up initiating from Mode 4

Bubble break-up

Simulation of bubble break-ups

$$R_E = 20 \,\mu\text{m}, \, p_A = 0.9 \,\text{bar}, \, f = 192 \,\text{kHz}$$

Bubble break-up

Simulation of bubble break-ups

$$R_E = 20 \,\mu\text{m}, \, p_A = 0.9 \,\text{bar}, \, f = 192 \,\text{kHz}$$

$$R_E = 30 \,\mu\text{m}, \, p_A = 0.7 \,\text{bar}, \, f = 130 \,\text{kHz}$$

Dániel Nagy, Ferenc Hegedűs

Important references

- Kaiser, Jakob WJ et al. "An adaptive local time-stepping scheme for multiresolution simulations of hyperbolic conservation laws". In: *Journal of Computational Physics: X* 4 (2019), p. 100038.
- Lauterborn, Werner and Thomas Kurz. "Physics of bubble oscillations". In: *Reports on progress in physics* 73.10 (2010), p. 106501.
- Mason, TJ, AP Newman, and SS Phull. "Sonochemistry in water treatment". In: Division of Chemistry, Coventry University, Convetry CVI 5FB (1994), pp. 3927–3933.
- Mason, Timothy J. "Sonochemistry and the environment–Providing a "green" link between chemistry, physics and engineering". In: Ultrasonics sonochemistry 14.4 (2007), pp. 476–483.

Thank you for your attention!

The problem

- Number of cells is not too large (parallelization is not too efficient, max. 80× speedup)
- More than a million time step is necessary

Axisymmetric simulations (bubble breakup)

Full 3D simulation

Dániel Nagy, Ferenc Hegedűs

HPC in sonochemistry

21/06/2022 21/21

Index

- Postprocessing 100
- Convergence study
 - Boundary and initial conditions •
 - Settings •
 - Mesh 90
 - Plots 90
 - Convergence order 990

- Numerics
 - Level-set
 - Multiresolution 90
 - Wavelet analysis 90
- Hydrodynamics
 - Keller-Miksis equation 90
 - Equation of state <a>90

Postprocessing in paraview

i goes through cells inside the bubble

• Area of the bubble

$$A_B = \sum_i A_i$$

• Average pressure of the bubble

$$p_B = rac{1}{A_B}\sum_i A_i \cdot p_i$$

Average density of the bubble

$$\rho_B = \frac{1}{A_B} \sum_i A_i \cdot \rho_i$$

Mass of the bubble

$$m = \rho_B \cdot A_B \cdot h$$
 or $m = h \sum_i A_i \rho_i$

Radius of the bubble I

$$R = \sqrt{\frac{A_B}{\pi}}$$

Radius of the bubble II

$$R_y = rac{y_{north} - y_{south}}{2}$$
 or $R_x = rac{x_{east} - x_{west}}{2}$

Dániel Nagy, Ferenc Hegedűs

Boundary and initial conditions

• Initial conditions (standing wave in water)

Water:
$$p(0,x) = p_0$$
, $\rho(0,x) = \rho_{0,v}$, $u(0,x) = -\frac{p_A}{c\rho_0} \sin\left(2\pi \frac{f}{c}x\right)$
Gas bubble: $p(0,x) = p_0$, $\rho(0,x) = \rho_{0,l}$, $u(0,x) = 0$

- Utilizing the symmetry
- boundary conditions

Convergence study settings

Standing wave

$$f = 20 \, \text{kHz}, \quad p_A = 0.1 \, \text{bar}$$

Bubble

$$p_0 = 1 \text{ bar}, \quad R_0 = 20 \, \mu \text{m}$$

Domain

 $\lambda \times \lambda \Leftrightarrow \mathbf{81.25}\,\mathbf{mm} \times \mathbf{81.25}\,\mathbf{mm}$

• Meshing with different minimum sized cells (*a*_{min})

Starting from 64 \times 64 cells

I _{max}	a _{min}	bubble/all cell
9	2.48 µm	208 / 40960
10	1.24 µm	812 / 50176
11	0.62 µm	3268 / 62462
12	0.31 µm	13076 / 87040
13	0.15 µm	33908 / 136192

Starting from 96 \times 96 cells

9	1.65 µm	460 / 61440
10	0.83 µm	1844 / 73728

Index Created mesh

Coarse resolution $a_{\min} = 2.48 \,\mu m$ Fine resolution $a_{\min} = 0.15 \,\mu m$

Convergence study plots

Convergence study plots

Convergence order

- Finest simulation: reference
- Relative derivation from the bubble radius

$$m{E}_{R}(t) = \left|rac{R_{
m ref}(t) - R(t)}{R_{
m ref}(t)}
ight| \cdot 100 \quad [\%]$$

• Fitting a curve on the relative errors $E_R = b \cdot a_{\min}^r$

r is the convergence order, *b* is a constant

Measured convergence

 $r_{50\,\mu s} = 2.43, \, r_{100\,\mu s} = 2.18, \, r_{150\,\mu s} = 2.64, \, r_{200\,\mu s} = 3.10 \quad \Rightarrow \quad \text{ at least 2nd order}$

relative deviation - minimum cell size

Numerics

Index The level-set method

 Implicit description of the phase-boundary

$$\phi(x,y) = 0 = \sqrt{(x-x_0)^2 + (y-y_0)^2} - R_0$$

Phase-boundary tracking

$$rac{\partial \phi}{\partial t} + \mathbf{u}_{\phi} \cdot
abla \phi = \mathbf{0},$$

3 Phase boundary velocity (\mathbf{u}_{ϕ})

A bubble described using the level-set method

Numerics

The *multiresolution* algorithm

Adaptive meshing in space and time using a combination of different resolution levels.

- $I_i i$ th level
- *I*₀ level: Square based mesh
- Vanishing detail

 $||u_{I_{m+1}} - u_{I_m}|| < \varepsilon_{I_m}$

 u_{l_i} is the representation of a conserved quantity on the l_i level

• Every non-vanishing detail is resolved

Parameters: I_{max} max. level, ε_{I_m} level-wise threshold

Multiresolution – wavelet analysis

Any function can be written as the sum of an infinite number of increasingly fine-resolution wavelets. A function u(x) can be expressed with wavelets as

$$u(x) = \sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} d_k^{l_m} \Psi_k^{l_m}(x)$$

where $d_k^{l_m}$ is the detail and $\Psi_k^{l_m}(x)$ is a wavelet formed as,

$$\Psi_k^{l_m}(x) = 2^{-l_m/2} \Psi(2^{l_m}x - k)$$

where $\Psi(x)$ is the mother wavelet. The detail $d_k^{l_m}$ can be calculated as

$$d_k^{l_m} = \int_{\mathbb{R}} u(x) \Psi_k^{l_m}(x) \mathrm{d}x.$$

The essence of the adaptive MR algorithm is that in places where the detail $d_k^{l_m}$ is negligible, i.e. less than the specified threshold, the terms can be completely neglected.

Keller-Miksis equation

Usual form:

$$\left(1-\frac{\dot{R}}{c_L}
ight)R\ddot{R}+\left(1-\frac{\dot{R}}{3c_L}
ight)\frac{3}{2}\dot{R}^2=\left(1+\frac{\dot{R}}{c_L}+rac{R}{c_L}rac{d}{dt}
ight)rac{\left(p_L-p_\infty(t)
ight)}{
ho_L},$$

R(t) is the bubble radius, c_L is the speed of sound and ρ_L is the density of the liquid. The pressure p_{∞} includes the excitation:

$$p_{\infty}(t) = 1 + P_{A1} \sin(\omega_1 t) + P_{A2} \sin(\omega_2 t + \theta).$$

Hydrodynamics

Equation of state

Tait equation of state

$$oldsymbol{
ho}=oldsymbol{B}\left(rac{
ho}{
ho_0}
ight)^\gamma-oldsymbol{B}+oldsymbol{A},~~\gamma=7.15,~~oldsymbol{A}=1 imes10^5\, extsf{Pa},~~oldsymbol{B}=3.31 imes10^8\, extsf{Pa}$$

Stiffened gas equation of state

$$p = (\gamma - 1)
ho e - p_{\infty}$$

• Water:
$$\gamma =$$
 4.4 and $p_{\infty} =$ 6 $imes$ 10⁸ Pa

• Air: $\gamma = 1.4$ and $p_{\infty} = 0$ Pa

TMP

Spam

11

¹Jakob WJ Kaiser et al. "An adaptive local time-stepping scheme for multiresolution simulations of hyperbolic conservation laws". In: *Journal of Computational Physics: X* 4 (2019), p. 100038; Werner Lauterborn and Thomas Kurz. "Physics of bubble oscillations". In: *Reports on progress in physics* 73.10 (2010), p. 106501; TJ Mason, AP Newman, and SS Phull. "Sonochemistry in water treatment". In: *Division of Chemistry, Coventry University, Convetry CVI 5FB* (1994), pp. 3927–3933; Timothy J Mason. "Sonochemistry and the environment–Providing a "green" link between chemistry, physics and engineering". In: *Ultrasonics sonochemistry* 14.4 (2007), pp. 476–483.