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Plasma simulation

• Understanding capacitively coupled 
radiofrequency discharges in plasma

• Spatiotemporal changes in electric field

• Non-equilibrium transport of particles

• Numerical simulation helps to understand
the behaviour of particles

• Uses kinetic theory for describing particle 
movement

• 1D and 2D geometries

2



Approach: Particle-in-Cell (PIC) simulation

• N-body problem
• no direct particle interaction, particles interact 

with the field
• place particle charges to grid
• solve grid for field – Poisson equation
• move particles based on field forces 

• Particle count:  from 100k to 10m particles 

• Complication: collision!

• CPU execution is long: ranging from days to months
• parallel solutions: OpenMP and/or MPI code
• irregular memory accesses make code difficult to parallelise efficiently
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Baseline: single-GPU implementation (1D geometry)
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Loop for simulation cycles (1000-3000)

Loop for input samples (800)

1. move electrons -- e_move kernel
2. check boundaries -- e_boundary kernel
3. electron collision -- e_collisions kernel
4. electron density calculation -- e_density kernel
5. move ions -- ion_move kernel
6. check boundaries -- ion_boundary kernel
7. ion collision -- ion_collisions kernel
8. ion density calculation -- ion_density kernel
9. Poisson solver -- CPU seq. solver 

(Thomas algorithm)

Problems:
- too many small kernels with low op. intensity, 
- memory bound kernels,
- kernel launch overhead,
- CPU Poisson solver, host-device data transfer

Assign particle 
charges to grid 

points

Solve Poisson 
equation

Compute particle 
forces from 
electric field

Move particles 
in space

Execute 
collisions, add/

remove particles

Add/remove 
particles at 
boundaries



GPU PIC/MCC behaviour

Speedup per-particle execution time

Multi-GPU advantage: 
• introduce further speedup for a system 

of given size (strong scaling)
• increase particle count without 

increasing execution time (weak scaling)
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Typical GPU systems (desktops, small clusters)

1 node
1 A100 GPU
6,912 cores

1 node
4 A100 GPUs
27,648 cores

4 nodes
16 A100 GPUs
110,592 cores
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Komondor (Hungary, coming soon): 
200 GPUs, 4.5 Pflop/s
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Marconi 100 (Italy): 
256 out of 3920 GPUs
32 Pflop/s
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Leonardo 
(Italy):

14000 GPUs
200+ Pflop/s

by end of 2022

How can we create efficient 
programs for such systems?
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Pre-exascale multi-GPU architecture

• At least three different 
communication fabrics
• PCI-e (CPU-GPU)

• Nvlink (GPU-GPU)

• Slingshot or 
Infiniband (node-
node)

• HPE Cray EX

• MARCONI 100

• LEONARDO 

CPU
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GPU 2

GPU 3

GPU 4

NVlink

PCIe PCIe

CPU

GPU 1
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NVlink
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PCIePCIe PCIe PCIe

10



Multi-GPU plasma simulation program 
strategies 
• Simulation strategies

• domain decomposition: each cell 
of the grid on one GPU

• particle decomposition: particles 
are distributed over the GPUs

• Implementation strategies

• single node, single thread

• single node, multithread 
(OpenMP)

• multi-node case
• MPI
• OpenMP/MPI hybrid
• OpenMP/CUDA-aware MPI hybrid
• NCCL
• NVSHMEM
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Single node, single thread multi-GPU program 
// distributing the workload across multiple devices

for (int i = 0; i < ngpus; i++) {

cudaSetDevice(i);

cudaMemcpyAsync(d_A[i], h_A[i], iBytes, 

cudaMemcpyHostToDevice, stream[i]);

cudaMemcpyAsync(d_B[i], h_B[i], iBytes, 

cudaMemcpyHostToDevice, stream[i]);

kernel<<<grid, block, 0, stream[i]>>> (d_A[i], d_B[i], d_C[i], iSize);

cudaMemcpyAsync(h_C[i], d_C[i], iBytes, 

cudaMemcpyDeviceToHost, stream[i]);

}

cudaDeviceSynchronize();
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Data distribution  

CPU

GPU 1 GPU 2 GPU 3 GPU 4

segment 1 segment 2 segment 3 segment 4x_e

segment 1 segment 2 segment 3 segment 4x_e x_e x_e x_e

e_field

e_field e_field e_field e_field

• each GPU moves particles locally and 
computes new charge densities 

• Poisson solver on CPU or on each GPU 
(requires collective communication)
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Multi-GPU 1D execution, single node, OpenMP
• execution timeline of a single iteration step
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Multi-node case, MPI strategy 

CPU

GPU 1 GPU 2 GPU 3 GPU 4

segment 1 segment 2 segment 3 segment 4x_e
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CPU
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e_field

e_field e_field e_field e_field

x_e

e_field

Node 1

Node 2

Node 4

Node 3
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Problems

• Requires collective communication operations involving CPU and GPU 
memory
• traditional MPI is not suitable – requires extra copy operations from GPU to 

CPU

• CUDA-aware MPI is OK, can use GPU pointers

• Communication initiation is on CPU
• difficult to overlap comms. with GPU kernel execution

• communication can eventually become a performance bottleneck

• scalability limit
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Alternative No 1 – NCCL

• NVIDIA Collective Communication Library

• Provides uniform API for all-gather, all-reduce, broadcast, reduce, 
reduce-scatter, point-to-point send and receive comm. routines

• Optimized to achieve high bandwidth and low latency over PCIe, 
NVLink and other high-speed interconnects

• Automatic topology detection for high bandwidth paths on AMD, 
ARM, PCI Gen4 and InfiniBand

• Supports multi-threaded and multi-process applications

• InfiniBand, RoCE and IP Socket internode communication

• NCCL 2.4 introduced tree-based all-reduce instead of rings 
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Mismatch of communication libraries and the 
CUDA model
• MPI and NCCL provide CPU-initiated communication routines

• Assumes separate computation and communication steps

• Fine for synchronous execution where all processes execute in parallel

• CUDA model relies on large number of threads to hide memory and 
instruction latency:  threads >> cores

• Internal scheduling of kernels (thread blocks) makes it difficult to hide 
communication

• Need a distributed model more aligned with the CUDA programming 
model
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Alternative No 2 – NVSHMEM 

• NVIDIA OpenSHMEM Library implementation – development started for and with 
the SUMMIT supercomputer system 

• Virtual shared memory system

• Collective and point-to-point communication routines called from CPU or from 
GPU kernel

• GPU-initiated communication: much simpler overlap of communication with 
computation

• Provides:
• Remote memory access (RMA: PUT/GET)
• Atomic memory operations (AMO)
• Signal operations
• Direct load and store operations
• Collective functions (broadcast, reductions, and others)
• Wait and test functions (local symmetric memory only)
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Partitioned Global Address Space

• Private vs global memory space

• private: normal device memory

• global: {symmetric address, PE index} pair
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NVSHMEM-based plasma code version

• kernels move/collide particles locally on each GPU

• update density vectors

• solve for local fields on each GPU

• perform all-reduce to update global e_field OR update global e_field
with NVSHMEM atomicAdd intructions in overlapped fashion
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2D geometry 

• 1D case
• particle count up to 1-10 millions: 1k cells, 1-10k particles per cell

• 2D case 
• 500 x 500 or 1k x 1k grid

• 100 to 1k particles per cell

• 25 M – 1 B particles

• e_field should be in shared memory on each GPU
• 1M instead of 1K elements

• Ampere persistent shared memory could help, otherwise must be moved into 
global memory 
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Summary

• Still in progress, single node and rudimentary MPI versions are complete, 
NVSHMEM version coming soon

• There are many alternatives for structuring and implementing pre-exascale
multi-GPU programs

• Selecting the best strategy and creating efficient code might not be easy

• Following implementation patterns developed for much smaller CPU-based 
systems might not be a good long-term choice

• Do not be afraid to re-design, re-structure your program

• Programs with hundreds of millions or billions of threads can be executed 
efficiently on state-of-the-art systems
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