
Implementation strategies for Multi-
GPU PIC/MCC plasma simulation on

pre-exascale systems

Zoltan Juhasz1, Zoltan Donko2 and Peter Hartmann2

1Dept. of Electrical Engineering and Information Systems,
University of Pannonia, Veszprem, Hungary

2Dept. of Complex Fluids, Institute for Solid State Physics and Optics,
Wigner Research Centre for Physics, Budapest, Hungary

1

Plasma simulation

• Understanding capacitively coupled
radiofrequency discharges in plasma

• Spatiotemporal changes in electric field

• Non-equilibrium transport of particles

• Numerical simulation helps to understand
the behaviour of particles

• Uses kinetic theory for describing particle
movement

• 1D and 2D geometries

2

Approach: Particle-in-Cell (PIC) simulation

• N-body problem
• no direct particle interaction, particles interact

with the field
• place particle charges to grid
• solve grid for field – Poisson equation
• move particles based on field forces

• Particle count: from 100k to 10m particles

• Complication: collision!

• CPU execution is long: ranging from days to months
• parallel solutions: OpenMP and/or MPI code
• irregular memory accesses make code difficult to parallelise efficiently

3

Baseline: single-GPU implementation (1D geometry)

4

Loop for simulation cycles (1000-3000)

Loop for input samples (800)

1. move electrons -- e_move kernel
2. check boundaries -- e_boundary kernel
3. electron collision -- e_collisions kernel
4. electron density calculation -- e_density kernel
5. move ions -- ion_move kernel
6. check boundaries -- ion_boundary kernel
7. ion collision -- ion_collisions kernel
8. ion density calculation -- ion_density kernel
9. Poisson solver -- CPU seq. solver

(Thomas algorithm)

Problems:
- too many small kernels with low op. intensity,
- memory bound kernels,
- kernel launch overhead,
- CPU Poisson solver, host-device data transfer

Assign particle
charges to grid

points

Solve Poisson
equation

Compute particle
forces from
electric field

Move particles
in space

Execute
collisions, add/

remove particles

Add/remove
particles at
boundaries

GPU PIC/MCC behaviour

Speedup per-particle execution time

Multi-GPU advantage:
• introduce further speedup for a system

of given size (strong scaling)
• increase particle count without

increasing execution time (weak scaling)

5

Typical GPU systems (desktops, small clusters)

1 node
1 A100 GPU
6,912 cores

1 node
4 A100 GPUs
27,648 cores

4 nodes
16 A100 GPUs
110,592 cores

6

Komondor (Hungary, coming soon):
200 GPUs, 4.5 Pflop/s

7

Marconi 100 (Italy):
256 out of 3920 GPUs
32 Pflop/s

8

Leonardo
(Italy):

14000 GPUs
200+ Pflop/s

by end of 2022

How can we create efficient
programs for such systems?

9

Pre-exascale multi-GPU architecture

• At least three different
communication fabrics
• PCI-e (CPU-GPU)

• Nvlink (GPU-GPU)

• Slingshot or
Infiniband (node-
node)

• HPE Cray EX

• MARCONI 100

• LEONARDO

CPU

GPU 1

GPU 2

GPU 3

GPU 4

NVlink

PCIe PCIe

CPU

GPU 1

GPU 2

GPU 3

GPU 4

NVlink

PCIe PCIe

NIC 2NIC 1

Slingshot
interconnect

NIC 2NIC 1

PCIePCIe PCIe PCIe

10

Multi-GPU plasma simulation program
strategies
• Simulation strategies

• domain decomposition: each cell
of the grid on one GPU

• particle decomposition: particles
are distributed over the GPUs

• Implementation strategies

• single node, single thread

• single node, multithread
(OpenMP)

• multi-node case
• MPI
• OpenMP/MPI hybrid
• OpenMP/CUDA-aware MPI hybrid
• NCCL
• NVSHMEM

11

Single node, single thread multi-GPU program
// distributing the workload across multiple devices

for (int i = 0; i < ngpus; i++) {

cudaSetDevice(i);

cudaMemcpyAsync(d_A[i], h_A[i], iBytes,

cudaMemcpyHostToDevice, stream[i]);

cudaMemcpyAsync(d_B[i], h_B[i], iBytes,

cudaMemcpyHostToDevice, stream[i]);

kernel<<<grid, block, 0, stream[i]>>> (d_A[i], d_B[i], d_C[i], iSize);

cudaMemcpyAsync(h_C[i], d_C[i], iBytes,

cudaMemcpyDeviceToHost, stream[i]);

}

cudaDeviceSynchronize();
12

Data distribution

CPU

GPU 1 GPU 2 GPU 3 GPU 4

segment 1 segment 2 segment 3 segment 4x_e

segment 1 segment 2 segment 3 segment 4x_e x_e x_e x_e

e_field

e_field e_field e_field e_field

• each GPU moves particles locally and
computes new charge densities

• Poisson solver on CPU or on each GPU
(requires collective communication)

13

Multi-GPU 1D execution, single node, OpenMP
• execution timeline of a single iteration step

14

Multi-node case, MPI strategy

CPU

GPU 1 GPU 2 GPU 3 GPU 4

segment 1 segment 2 segment 3 segment 4x_e

segment 1 segment 2 segment 3 segment 4x_e x_e x_e x_e

e_field

e_field e_field e_field e_field

partition 1 partition 2 partition 3 partition 4

CPU

GPU 1 GPU 2 GPU 3 GPU 4

segment 1 segment 2 segment 3 segment 4x_e

segment 1 segment 2 segment 3 segment 4x_e x_e x_e x_e

e_field

e_field e_field e_field e_field

CPU

GPU 1 GPU 2 GPU 3 GPU 4

segment 1 segment 2 segment 3 segment 4x_e

segment 1 segment 2 segment 3 segment 4x_e x_e x_e x_e

e_field

e_field e_field e_field e_field

CPU

GPU 1 GPU 2 GPU 3 GPU 4

segment 1 segment 2 segment 3 segment 4x_e

segment 1 segment 2 segment 3 segment 4x_e x_e x_e x_e

e_field

e_field e_field e_field e_field

x_e

e_field

Node 1

Node 2

Node 4

Node 3

15

Problems

• Requires collective communication operations involving CPU and GPU
memory
• traditional MPI is not suitable – requires extra copy operations from GPU to

CPU

• CUDA-aware MPI is OK, can use GPU pointers

• Communication initiation is on CPU
• difficult to overlap comms. with GPU kernel execution

• communication can eventually become a performance bottleneck

• scalability limit

16

Alternative No 1 – NCCL

• NVIDIA Collective Communication Library

• Provides uniform API for all-gather, all-reduce, broadcast, reduce,
reduce-scatter, point-to-point send and receive comm. routines

• Optimized to achieve high bandwidth and low latency over PCIe,
NVLink and other high-speed interconnects

• Automatic topology detection for high bandwidth paths on AMD,
ARM, PCI Gen4 and InfiniBand

• Supports multi-threaded and multi-process applications

• InfiniBand, RoCE and IP Socket internode communication

• NCCL 2.4 introduced tree-based all-reduce instead of rings

17

Mismatch of communication libraries and the
CUDA model
• MPI and NCCL provide CPU-initiated communication routines

• Assumes separate computation and communication steps

• Fine for synchronous execution where all processes execute in parallel

• CUDA model relies on large number of threads to hide memory and
instruction latency: threads >> cores

• Internal scheduling of kernels (thread blocks) makes it difficult to hide
communication

• Need a distributed model more aligned with the CUDA programming
model

18

Alternative No 2 – NVSHMEM

• NVIDIA OpenSHMEM Library implementation – development started for and with
the SUMMIT supercomputer system

• Virtual shared memory system

• Collective and point-to-point communication routines called from CPU or from
GPU kernel

• GPU-initiated communication: much simpler overlap of communication with
computation

• Provides:
• Remote memory access (RMA: PUT/GET)
• Atomic memory operations (AMO)
• Signal operations
• Direct load and store operations
• Collective functions (broadcast, reductions, and others)
• Wait and test functions (local symmetric memory only)

19

Partitioned Global Address Space

• Private vs global memory space

• private: normal device memory

• global: {symmetric address, PE index} pair

20

NVSHMEM-based plasma code version

• kernels move/collide particles locally on each GPU

• update density vectors

• solve for local fields on each GPU

• perform all-reduce to update global e_field OR update global e_field
with NVSHMEM atomicAdd intructions in overlapped fashion

21

2D geometry

• 1D case
• particle count up to 1-10 millions: 1k cells, 1-10k particles per cell

• 2D case
• 500 x 500 or 1k x 1k grid

• 100 to 1k particles per cell

• 25 M – 1 B particles

• e_field should be in shared memory on each GPU
• 1M instead of 1K elements

• Ampere persistent shared memory could help, otherwise must be moved into
global memory

22

Summary

• Still in progress, single node and rudimentary MPI versions are complete,
NVSHMEM version coming soon

• There are many alternatives for structuring and implementing pre-exascale
multi-GPU programs

• Selecting the best strategy and creating efficient code might not be easy

• Following implementation patterns developed for much smaller CPU-based
systems might not be a good long-term choice

• Do not be afraid to re-design, re-structure your program

• Programs with hundreds of millions or billions of threads can be executed
efficiently on state-of-the-art systems

23

