

Improving efficiency of non-Gaussian photonic circuit simulations

Zoltán Kolarovszki

June 21, 2022

< □ > < @ > < 볼 > < 볼 > 볼 ♡ Q @ 1/19

Modeling optical circuits

Tensorial computation

Proposed computation

Comparison

Modeling an optical circuit

 e_0, \ldots, e_{d-1} are orthonormal basis vectors corresponding to one particle in the **qumode** with the same label.

Example: e₂ corresponds to a system with a single particle in the 2nd qmode.

Fock basis states

Fock basis states can be built from e_0, \ldots, e_{d-1} using the symmetric tensor product. For d = 3, one can construct

$$e_0 \vee e_1 \vee e_1 \vee e_1 = e_0^{\vee 1} \vee e_1^{\vee 3} \vee e_2^{\vee 0} =: |\underbrace{1}_{\text{mode 0 mode 1 mode 2}} \rangle = |130\rangle.$$
(1)

Number of particles = sum of integers in the Fock basis state, e.g.

$$|4,0,1,3\rangle \implies n = 4 + 0 + 1 + 3 = 8.$$
 (2)

Considering only a fixed number of particles n the number of basis states is

$$\binom{d+n-1}{n} = \frac{(d+n-1)!}{(d-1)!n!}$$
(3)

<ロト < 回 > < 直 > < 直 > < 直 > < 直 > < 三 > < 三 か へ () 4/19

Quantum states are combinations of Fock basis states, where the square of the **coefficients** sum to 1, e.g.

$$\frac{1}{2}|1,2,3\rangle + \frac{\sqrt{3}}{2}|0,2,0\rangle. \tag{4}$$

A generic pure state can be written as

$$|\psi\rangle = \sum_{\vec{n}\in\mathbb{N}^d} c_{\vec{n}} |\vec{n}\rangle, \qquad c_{\vec{n}}\in\mathbb{C}.$$
 (5)

Quantum gates

 $Quantum \ gates$ are maps between Fock basis states, e.g. the $beamsplitter \ gate$ acts on the $|1,0\rangle$ state as

$$B(\theta)|1,0
angle = \cos \theta |1,0
angle + \sin \theta |0,1
angle, \qquad \theta \in [0,2\pi).$$
 (6)

Generally, a general quantum gate G can be written as

$$G = \sum_{\vec{n}, \vec{m} \in \mathbb{N}^d} c_{\vec{n}, \vec{m}} |\vec{n}\rangle \langle \vec{m} |, \qquad c_{\vec{n}, \vec{m}} \in \mathbb{C}.$$
(7)

Mode-by-mode cutoff

No restriction on the number of particles \implies infinitely many coefficients.

Idea: Cutoff.

Restrict the maximum number of particles **per mode** \implies **"mode-by-mode"** cutoff. With this consideration state can be approximated by

$$|\psi\rangle \approx \sum_{\vec{n}\in[0,c-1]^d} c_{\vec{n}} |\vec{n}\rangle, \qquad c_{\vec{n}}\in\mathbb{C}.$$
 (8)

With this prescription, we will have c^d many coefficients.

Example: (c = 5)

 $|2,3,4\rangle$ can be simulated, while

 $|5,6,7\rangle$ cannot be simulated (since e.g. $7 \ge 5$).

Drawback of tensorial computation

 c^d could be huge even for small systems!

Let d = 7 and c = 5. To store a quantum gate as a tensor of complex numbers of size 16 bytes, we need

 $(c^d)^2 \times 16 \; \rm bytes = 5^{14} \times 16 \; \rm bytes = 97656250000 \; \rm bytes \approx 90.9 \; GiB$

File "/home/zk/Projects/piquasso/.venv/lib/python3.8/site-packages/strawberryfields/ba
ckends/fockbackend/circuit.py", line 446, in prepare_multimode
 self._state = ops.mix(self._state, self._num_modes)
 File "/home/zk/Projects/piquasso/.venv/lib/python3.8/site-packages/strawberryfields/ba
ckends/fockbackend/ops.py", line 120, in mix
 return np.einsum(einstr, state, state.conj())
File "<_array_function__ internals>", line 5, in einsum
File "/home/zk/Projects/piquasso/.venv/lib/python3.8/site-packages/numpy/core/einsumfu
nc.py", line 1359, in einsum
 return c_einsum(*operands, **kwargs)
numpy.core._exceptions.MemoryError: Unable to allocate 90.9 GiB for an array with shape
(5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5) and data type complex128

Active and passive gates

Beamsplitter gate **conserves** the particle number:

$$B(\theta)|1,0\rangle = \cos(\theta)|1,0\rangle + \sin(\theta)|0,1\rangle. \tag{9}$$

However, the resulting state may have different number of particles than the initial state, e.g. the **displacement gate** produces particles as

$$D(\alpha)|0\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_{k=0}^{\infty} \frac{\alpha^k}{\sqrt{k!}} |k\rangle$$
(10)

Passive gates: preserve the number of particles.

Active gates: create or annihilate particles.

Matrix representation for single particle

Fock basis states can be mapped to vectors of length d as

$$\begin{aligned} |1,0\rangle &\mapsto \begin{pmatrix} 1\\0 \end{pmatrix} & (11) \\ |0,1\rangle &\mapsto \begin{pmatrix} 0\\1 \end{pmatrix} & (12) \end{aligned}$$

We can represent the **passive** gates as $d \times d$ matrices, i.e.

$$B(\theta) \mapsto \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} =: B(\theta)|_1$$
(13)

<ロ><回><日><日><日><日><日><日><日><日><日><日><日><日><日</td>11/19

For a **multiparticle state** with n particles, passive gate representation of particle number n can be calculated from the 1-particle representation as

$$B(\theta)\big|_{n} = \left(B(\theta)\big|_{1}\right)^{\vee n}.$$
(14)

 $\binom{d+n-1}{n}$ basis vectors \implies Quantum gates are $\binom{d+n-1}{n} \times \binom{d+n-1}{n}$ matrices.

General matrix representation

A passive gate can be written in the Fock basis as

Cutoff for total particle number

We can impose a "system-wide" cutoff for the total particle number. This yields square matrices of the form

Memory usage using system-wide cutoff

Let (again) c = 5 and d = 7. Then the memory usage of a quantum gate is

$$\left(rac{d+c-1}{c-1}
ight)^2 imes 16 ext{ bytes} = \left(rac{7+5-1}{5-1}
ight)^2 imes 16 ext{ bytes} pprox 1.66 ext{ MiB}.$$

Negligible in comparison with the previously obtained 90.9 GiB!

However, system-wide cutoff cuts out more coefficients \implies worse approximation.

Example: (c = 5)

 $\begin{array}{ll} |4,3,2\rangle \ \in \ \mbox{mode-by-mode cutoff, since } 4 < 5, \ 3 < 5 \ \mbox{and } 2 < 5, \ \mbox{but} \\ |4,3,2\rangle \ \notin \ \mbox{system-wide cutoff, since } 4 + 3 + 2 \geq 5. \end{array}$

Argument for system-wide cutoff

For active gates, contributions from higher particle numbers are (ususally) small.

Consider a simple displaced state

$$D(\alpha)|0\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_{k=0}^{\infty} \frac{\alpha^k}{\sqrt{k!}} |k\rangle.$$
(16)

The particle number detection probabilities are

$$p(n) = |\langle n | \alpha \rangle|^2 = e^{-|\alpha|^2} \frac{|\alpha|^{2n}}{n!}, \qquad (17)$$

which quickly tapers off to 0. Similar conclusion can be obtained for other systems.

2nd argument for system-wide cutoff

Faster simulation for Fock basis states and passive gates.

Fock basis states \implies same results for identical cutoffs.

We have shown that the **memory usage** is significantly reduced.

We will show the same for the **computation time**.

2 column of Kerr gates

Comparison of average computation times

■ ► ■ つへで 18/19

Thank you for your attention!

<□><□><□><□><□><□><□><□><□><□><□><0<○ 19/19