
Polynomial speedup in exact Torontonian calculation by a scalable
recursive algorithm

Ágoston Kaposi

Eötvös Loránd University, Faculty of Informatics

21. June 2022

1 / 16



Photonic Quantum Computing
A photonic quantum computer stores information in independent optical modes, called
qumodes. Between the modes there can be several parametrized connections which
can be described by an interferometer matrix.

2 / 16



Gaussian states

The fully general case is hard to simulate and hard to build physically. One add
conditions for the light sources, the detectors and the gates between them.

Gaussian states are the states which have at most quadratic Hamiltonian. (E.g.
Beamsplitter, Squeezing, Displacement)

A Gaussian state can be fully characterized by their mean vector µ ∈ C2N and their
covariance matrix σ ∈ C2N×2N .

3 / 16



Reduction

We take a vector of 0, 1 numbers S = {s1, . . . , sN} and a matrix A ∈ CN×N . We can
note the reduction of A into vector S , where we take the reduction on all columns and
rows corresponding to S : if it is 0, we eliminate and if it is 1, we leave it in matrix. We
denote it by AS . 

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


(0,1,0,1)

=

(
a22 a24
a42 a44

)

In our case we have block-reduction which means at a vector S the reduction of S , S .

4 / 16



Gaussian boson sampling with threshold detection

We consider those Gaussian states which have a mean vector 0 (without Displacement
gates). We consider the measurement with threshold detectors which means that we do
not differentiate between the number of photons, just the fact whether any photons
were detected or not.
From the complex covariance matrix σ, we create the Husimi covariance matrix
Σ = σ + 1/2.
Probability of a possible outcome vector S (0 means no particle detection, 1 means
particle detection) can be exactly calculated with the help of the Torontonian matrix
function:

p (S) =
Tor (OS)√
det (Σ)

, (1)

where O = 1− Σ−1 and OS means the block reduction of O to S .

5 / 16



Torontonian function

The Torontonian is a matrix function which can be defined in the following way in case
of a rectangular matrix A:

Tor (A) =
∑
Z∈PN

(−1)N/2−|Z |√
|det(1− AZ )|

, (2)

where PN means all powerset of {1, . . . ,N} and AZ means the row and column
reduction of A corresponding to Z .
Complexity of the determinant is O(Nω) where N denotes the matrix size and ω > 2
even in Hermitian cases. This results as a complexity of the Torontonian function in
O
(
Nω · 2N

)
.

6 / 16



Torontonian function of Hermitian matrices

Our observation was that the computational costs of evaluating the Torontonian
function can be significantly reduced by a wise reuse strategy of the intermediate results
during the evaluation of the determinants in Equality (2). In our algorithm we calculate
determinants via Cholesky decomposition [1] bringing an N × N positive definite
Hermitian matrix A into a product form A = LL†, where L is a lower triangular matrix.
Then the determinant of A can be calculated from the diagonal elements of L by

det(A) =
N∏
i=1

|Lii |2.

We proposed an algorithm to calculate the Torontonian where the determinant
calculation routines are called recursively providing a possibility to partially reuse the
Cholesky decomposition of each submatrix AZ in the next step of the recursive chain.
Our algorithm was designed to take advantage from reusable computational data, while
keeping up an efficient parallelization technique and polynomial memory needs.

7 / 16



Cholesky-decomposition

Cholesky decomposition for a positive definite Hermitian matrix A:

Li ,i =

√√√√Ai ,i −
i−1∑
k=1

|Li ,k |2, i = 1, . . . ,N

Li ,j =
1

Lj ,j

(
Ai ,j −

j−1∑
k=1

Li ,kLj ,k

)
, i = 1, . . . ,N, j = 1, . . . , i − 1

Since A is Hermitian and L is lower triangular, it is sufficient to consider only the lower
triangular part of both matrices.

8 / 16



Data dependency in Cholesky decomposition
The idea behind our algorithm is based on the fact that during the
Cholesky-decomposition the sub-block L11 depends only on A11, L21 can be calculated
using A21 and L11, while L22 is determined from elements of A22 and L21.

A11

L21

A L

This dependency enables us to reuse already calculated data in further calculations.

9 / 16



Matrix reduction with Cholesky-decomposition
During the Torontonian calculation there are many places, where between two vectors
S1 and S2 the difference is at only one place which means one row reduction.

A11

A

I - AZ L

L
~

1
2
3
4
5
6

I - A1
2

5
6

9
10

13
14

a) b)

c) d)

10 / 16



Recursive algorithm
L = cho l e s k y ( I−A)
de t e rm inan t = product_diagonal_element_abs (L )
t o r = 1 / s q r t ( de t e rm inan t )

r e c u r s i v e_ t o r o n t o n i a n (L , [ ] )

def r e c u r s i v e_ t o r o n t o n i a n (L , modes ) :
i f modes . s i z e == 0 :

s t a r t = 0
e l s e :

s t a r t = modes [ −1] + 1
f o r i i n range ( s t a r t , N/2 ) :

next_modes = modes ++ [ i ]
A_Z = create_AZ (L , next_modes )
next_L = cho l e s k y ( I − A_Z)
de t e rm inan t = product_diagonal_element_abs ( next_L )
t o r o n t o n i a n += −1 ∗∗( l en ( next_modes ) ) / s q r t ( de t e rm inan t )
r e c u r s i v e_ t o r o n t o n i a n ( next_L , next_modes )

11 / 16



Complexity of the algorithm
Due to high data dependency in the recursive algorithm, we sum up all floating-point
operations (FLOs) for both standard and recursive algorithms. We expect the
complexity of the algorithms to be proportional to Nω2N/2.
The value of ω can be obtained from the logarithm of the overall FLOs as follows:

ωln(N) = ln(FLOs)− N

2
ln(2)− C , (3)

where C is a constant number. After calculating ω and a linear fitting.

3.2 3.4 3.6 3.8 4

7

8

9

10
Standard algorithm

Recursive algorithm

12 / 16



Complexity speedup

According to the numerical results, the recursive reuse of the Cholesky decomposition in
subsequent determinant calculations reduces the computational complexity

C(standard) ∼ N2.73552N/2

of the standard algorithm to

C(recursive) ∼ N1.06952N/2

leading to a polynomial speedup by a factor of

∼ N1.666

.

13 / 16



Fidelity of the calculation

Numerically the classical calculation and the recursive one have the same numerical
fidelity since the addends in the most outer sum are the same.

10
-12

10
-8

10
-4

10
0

40 45 50 55 60

10
-10

10
-6

10
-2

10
2

We compared
our implementation to a well known software
tool developed by Xanadu (TheWalrus
[2]). We plotted the relative difference

εX =
|TorTheWalrus − TorX |

TorX
(4)

between the results of TheWalrus
package and our implementation at different
precisions (X = double or X = extended).
Here we note that TheWalrus package
calculates the Torontonian only in extended precision.

14 / 16



Performance benchmark

We ran performance benchmark of our recursive algorithm to the TheWalrus package
with averaged Torontonian calculation time T of random sampling matrices of size N.
Our implementation of the recursive algorithm shows much better performance than
TheWalrus package version 0.15 which means 237-fold speedup.

10 20 30 40 50 60

10
-4

10
-2

10
0

10
2

10
4 TheWalrus

Recursive alg. extended precision

Recursive alg. double precision

The benchmark was done on an Intel Xeon Gold 6130 platform using 24 threads in shared memory model. T was determined by the
average time of 100, 10 and 2 independent Torontonian computing cycles for matrices of size N = 4 . . . 52, N = 54 . . . 58 and
N = 60 . . . 62 respectively.

15 / 16



Thank you for your attention![3]

Nicholas J. Higham.
Cholesky factorization.
Wiley Interdisciplinary Reviews: Computational Statistics, 1(2):251–254, September 2009.

Brajesh Gupt, Josh Izaac, and Nicolás Quesada.
The walrus: a library for the calculation of hafnians, hermite polynomials and gaussian
boson sampling.
Journal of Open Source Software, 4(44):1705, 2019.

Kolarovszki Z. Kozsik T. Zimborás Z. Rakyta P. Kaposi, Á.
Polynomial speedup in torontonian calculation by a scalable recursive algorithm.
2021.

16 / 16


