Trans-Neptunian objects	Mean-motion resonances	Chaotic diffusion	Computations	Results	Summary

The resonant structure of the trans-Neptunian space

Emese Kővári^{1,2,4},

Emese Forgács-Dajka^{1,2,4}, Tamás Kovács^{3,4}, Zsolt Sándor^{1,2,5}

¹Department of Astronomy, Institute of Geography and Earth Sciences, ELTE
 ²Centre for Astrophysics and Space Science, ELTE
 ³ELKH-ELTE Extragalactic Astrophysics Research Group
 ⁴Wigner Research Centre for Physics
 ⁵Konkoly Observatory, Research Centre for Astronomy and Earth Sciences

Budapest, 21st June 2022

Trans-Neptunian objects	Mean-motion resonances	Chaotic diffusion	Computations	Results	Summary
•					
The trene Nent	union ano co				

The trans-Neptunian space

Data: ~ 4200 trans-Neptunian objects (TNOs) between 30.1 and 2000 AU:

Kővári, Forgács-Dajka, Kovács, Sándor

Trans-Neptunian objects	Mean-motion resonances	Chaotic diffusion	Computations	Results	Summary
O	●0		O	00000	O
Mean-motion re	sonances				

$$\frac{n}{n'} \approx \frac{p+q}{p}$$

Trans-Neptunian objects	Mean-motion resonances	Chaotic diffusion	Computations	Results	Summary
O	●0		O	00000	O
Mean-motion re	sonances				

$$\frac{n}{n'} \approx \frac{p+q}{p}$$

Trans-Neptunian objects	Mean-motion resonances	Chaotic diffusion	Computations	Results	Summary
O	●0		O	00000	O
Mean-motion re	sonances				

$$\frac{n}{n'}\approx \frac{p+q}{p}$$

Trans-Neptunian objects	Mean-motion resonances	Chaotic diffusion	Computations	Results	Summary
O	●0		O	00000	O
Mean-motion re	sonances				

$$\frac{n}{n'} \approx \frac{p+q}{p}$$

Trans-Neptunian objects	Mean-motion resonances	Chaotic diffusion	Computations	Results	Summary
O	●0		O	00000	O
Mean-motion re	sonances				

$$\frac{n}{n'} \approx \frac{p+q}{p}$$

Trans-Neptunian objects	Mean-motion resonances	Chaotic diffusion	Computations	Results	Summary
O	●0		O	00000	O
Mean-motion re	sonances				

$$\frac{n}{n'} \approx \frac{p+q}{p}$$

Trans-Neptunian objects	Mean-motion resonances	Chaotic diffusion	Computations	Results	Summary
O	●0		O	00000	O
Mean-motion re	sonances				

 mean-motion commensurability: periodic repeat of a particular orbital configuration (the ratio of the mean motions n, n' are the ratio of small integers):

$$\frac{n}{n'} \approx \frac{p+q}{p}$$

• mean-motion resonance (MMR): commensurability + libration of the critical argument θ around a mean value:

$$\theta = (p+q)\lambda - p\lambda' - q\widetilde{\omega}'$$

$$\begin{split} \lambda,\lambda': \text{mean longitudes}\\ \widetilde{\omega}': \text{longitude of the perihelion} \end{split}$$

Trans-Neptunian objects	Mean-motion resonances	Chaotic diffusion	Computations	Results	Summary
O	⊙●		0	00000	O
Mean-motion re	esonances				

Identification of MMRs: FAIR method: (Forgács-Dajka et al., 2018)

• long-term MMR:

short-term MMR:

Chaotic diffusion:

- drift of a phase point in the phase space (this might lead to orbital instabilities)
- slow/Arnold diffusion: small perturbations, chaos is confined to thin layers around single resonances

fast diffusion:

large perturbations, resonance overlap, extended chaotic domains

An efficient indicator of chaos:

• maximal variation of the eccentricity e throughout the total integration time span $T_{\rm tot}$:

$$\Delta e := \max_{t \le T_{\text{tot}}} (e) - \min_{t \le T_{\text{tot}}} (e)$$

O	OO	Chaotic diffusion	Computations	Results	O				
O		⊙●	O	00000	O				
Chartie difference and its measures									

Chaotic diffusion and its measures

Quantification of the diffusion coefficient:

• diffusion coefficient from the time derivative of the variance of some phase space variable X:

$$Var(X) = \langle (X - \langle X \rangle)^2 \rangle = 2D_{Var}t$$
$$D_{Var} = \frac{1}{2} \frac{dVar(X)}{dt}$$

• diffusion coefficient from the time derivative of the Shannon entropy:

$$S(X) = -\sum_{k=1}^{r} \frac{n_k}{N} \ln\left(\frac{n_k}{N}\right)$$

$$D_S = \frac{(X_{\max} - X_{\min})^2}{r} r_0 \frac{\mathrm{d}S(X)}{\mathrm{d}t}$$

$$N=6$$

$$r=3x3$$

Characteristic times of stability:

$$\tau_{\text{Var}} = \frac{1}{\langle D_{\text{Var}} \rangle}$$
$$\tau_S = \frac{1}{\langle D_S \rangle}$$

Kővári, Forgács-Dajka, Kovács, Sándor

Trans-Neptunian objects O	Mean-motion resonances	Chaotic diffusion	Computations •	Results 00000	Summary O
Computations					

Direct long-term integrations:

- barycentric coordinate system
- Sun + 4 giants + small body (4200 TNOs, $6 \cdot 10^5$ test particles)
- integrator: Runge-Kutta-Nyström 7(6) (Dormand & Prince, 1978) (tolerance: 10⁻¹⁴)
- total integration time span:
 - TNOs: 100 Myr
 - test particles (for the dynamical maps): 200 kyr
- sampling time step: 100 yr

For the computation of the Shannon entropy of a given TNO:

- selected variables: the Delaunay variables L (energy) and G (angular momentum)
- total grid size: $L_0 \pm 0.005$, $H_0 \pm 0.005$
- number of cells of the grid: $r = 500 \times 500$

Trans-Neptunian objects	Mean-motion resonances	Chaotic diffusion	Computations	Results	Summary
O	00		O	●○○○○	O
Deconant distribut	ution of TNOs				

Kővári, Forgács-Dajka, Kovács, Sándor

Long-term MMR (3:2):
$$\tau_{\text{Var}} \simeq 1.5 \cdot 10^{10} \frac{\text{yr}}{\text{AU}^6/\text{yr}^2}, \quad \tau_S \simeq 9.4 \cdot 10^{10} \frac{\text{yr}}{\text{AU}^6/\text{vr}^2}$$

Short-term MMR (13 : 3):
$$\tau_{Var} \simeq 2.2 \cdot 10^7 \frac{yr}{AU^6/yr^2}, \quad \tau_S \simeq 6.8 \cdot 10^7 \frac{yr}{AU^6/yr^2}$$

Trans-Neptunian objects 0	Mean-motion resonances 00	Chaotic diffusion	Computations O	Results ○○○●○	Summary O
Dynamical maps	5				
34 - 40 AU:					
Dynamical map Integration time: 2.0E 0.6	+05yr; Angle variables: i = 0*-30*, Q = 0	Uranus-crossing	NMM S:S	- 0.20	00

Neptune

37 semi-major axis [AU]

35

36

0.4

0.2

0.1

0.0

eccentricity 6.0

39

38

0.0537

0.0278

0.0144

0.0075

0.0039

< 0.0020

⁴⁰ Δe

Trans-Neptunian objects	Mean-motion resonances	Chaotic diffusion	Computations	Results	Summary
O	00		0	○○○○●	0
Dynamical man	s				

40 - 49 AU:

Trans-Neptunian objects	Mean-motion resonances	Chaotic diffusion	Computations	Results	Summary
O	00		O	00000	•
Summary					

Importance of studying the trans-Neptunian region:

- helps to better understand the formation and evolution of planetary systems
- · serves as a reservoir of dynamically unstable minor bodies
- feeds the population of near-Earth and of potentially hazardous asteroids

Significance of mean-motion resonances:

- periodic repeat of given configurations ⇒ large gravitational perturbations ⇒ big changes in the orbit of the minor body
- resonance overlap \Rightarrow strongly chaotic behaviour
- certain MMRs: offer safe harbours to minor bodies (see e.g.: Plutinos, Trojan asteroids, etc.)

Conclusions:

- semi-automatic identification of resonant TNOs in a remarkably large sample ($\sim 4200 \mbox{ bodies})$
- distinction between the short- and long-term MMRs
- exploration of the dynamical structure of the $30-50~{\rm AU}$ region via dynamical maps of test particles
- study of chaotic processes via probabilistic chaos indicators (Shannon entropy)

