
Accelerated Particle in Cell with
Monte Carlo Collisions (PIC/MCC)

simulation for gas discharge
modeling in realistic geometries.

Péter Hartmann, Zoltán Juhász, Zoltán Donkó
Wigner Research Centre for Physics, Budapest, Hungary

Dept. of Electrical Engineering and Information Systems, University of Pannonia, Veszprem, Hungary

Motivation: PK-4 Experiment on the ISS

Review of Scientific Instruments 87, 093505 (2016); doi: 10.1063/1.4962696

Motivation: PK-4 Experiment on the ISS

Motivation: PK-4 Experiment on the ISS

The question: Why do the dust particles align in chains?

The question: Why do the dust particles align in chains?

Known mechanism: ion drift and wake field formation:

Soft Matter, 2011, 7, 1287-1298

BUT: In the PK-4 discharge the electric field is very low  
(~3 V/cm) and the ion drift velocity is not enough!!!

https://doi.org/10.1039/1744-6848/2005

Let’s use numerical simulations to find discharge conditions:
PIC/MCC:

Advance particles
(equation of motion) new
velocities and positions

Calculate electric field
at grid points
(Poisson eq.)

MC:
Check for collisions,
add/remove particles

Check for boundaries:
remove/add

particles

Assign charges to
grid points

Weight field to particle
positions

(calculate forces)

Bounded
plasma

Collisional
plasma

+ DIAGNOSTICS

Ionization waves:

093505-7 Pustylnik et al. Rev. Sci. Instrum. 87, 093505 (2016)

FIG. 9. (a) Technical image of the plasma glow observation (PGO) system.
The kaleidoscopic mirror system produces three images of the plasma cham-
ber through three di↵erent filters. Upper and lower narrow-band filters are
designed to transmit 703.2 and 585.2 nm spectral lines of neon, respectively.
The central filter is a neutral density filter with approximately 12% trans-
mission. Bold arrows show the view directions of the PO and PGO cameras.
The mirror system covers the entire working area of the plasma chamber and
is therefore not shown in Fig. 2 for clarity. (b) Typical image of a neon dc
discharge (pressure 0.5 mbar, current 1 mA) taken by the PGO camera.

the spectral widths of 9.2 and 8.2 nm, respectively. The third
channel (central) is equipped with a neutral density filter with
approximately 12% transmission. A typical PGO image of
the neon plasma is shown in Fig. 9(b). The resolution of the
PGO system on the central image is about 430 µm/pixel.

The central imaging channel will provide a (spectrum-
integrated) plasma image irrespective of the gas type.
Moreover, it will register not only the plasma light but also
the scattered light of the illumination (see Sec. II F) and
manipulation (see Sec. II G 3) lasers. The central channel
would therefore deliver also the overview information on the
distribution of the microparticles in the working area of the
plasma chamber. This information is very important during
the real-time operations as well as for the interpretation of
the microparticle dynamics observed with the high-resolution
particle observation cameras.

In the case of a neon discharge, the upper and lower
channels carry diagnostic information, which may be used for
the characterization of the background plasma. In the case of
an argon discharge, both channels should (ideally) be black,

although they might exhibit a certain level of emission either
due to the impurities or due to the adjacent argon lines (e.g.,
706.7 nm).

2. Spectrometer

PK-4 has an OceanOptics USB2000+ minispectrometer
on board. Equipped with 600 mm�1 grating and 25 µm input
aperture, it provides a spectral resolution of 1.5 nm. The 2048-
pixel linear sensor of the spectrometer allows the simultaneous
acquisition of a spectrum in the wavelength range of
350 � 1100 nm. The receiving optics of the spectrometer
is installed on the X-axis translation stage (Table I) together
with the particle observation cameras and can therefore be
moved along the working area of the plasma chamber together
with them (Fig. 2). The readout rate of the spectrometer is
limited by the internal interfaces of the experimental setup.
The minimal readout time of a full spectrum is 4 s.

Compared to the PGO system, the spectrometer delivers
much more spectral information but only locally. The
spectrometer was intensity-calibrated before launch with
the help of a tungsten-halogen lamp. The spectral data can
therefore be used to determine, e.g., the metastable densities
in the plasma in the manner of Ref. 38.

The spectrometer is also useful to determine the presence
of impurities in the plasma. In Fig. 10, the process of the
plasma purification after the argon-oxygen cleaning of the
plasma chamber is demonstrated. When a neon plasma is
generated for the first time after the cleaning, the spectrum
exhibits a massive pollution by carbon monoxide and nitrogen.
However, after one hour of the neon discharge operation with
the gas flow of 0.5 sccm, only neon lines remain visible in the
spectrum.

FIG. 10. Purification of a dc neon plasma (1 mA, 0.5 mbar, gas flow
0.5 sccm) after argon-oxygen cleaning. The on-board PK-4 spectrometer
allows to detect the impurities in the plasma. First positive system of
nitrogen39 N2

�
B3⇧g! A3⌃+u

�
and Angström group of carbon monoxide40

CO
�
B1⌃+u ! A1⇧

�
are visible along with the NeI(2P! 1S) lines right after

the cleaning.

-500

 0

 500

 1000

 1500

 2000

 0 0.2 0.4 0.6 0.8 1

E z
 [
v/
m
]

time [ms]

 0

 2x1014

 4x1014

 6x1014

 8x1014

 1x1015

 1.2x1015

 1.4x1015

 1.6x1015

 1.8x1015

 0 0.2 0.4 0.6 0.8 1

n e
 a
nd
 n
i [
1/
m
3]

time [ms]

ni
ne

experiment

PIC
1 ms

PIC
1.2 𝜇s

Ionization waves:

PIC

ground based
experiment

Simulation details:

Model parameters:
- super-particle weight: ~105
- super-particle number: 106 - 107

- particle pusher: leap-frog algorithm
- field solver: black-red successive over-relaxation (SOR)
- Mesh size: 128(r) x 4096(z)

System parameters:
- Neon gas (electrons: elastic scattering, excitation, ionization; Ne+ ions:

isotropic elastic and charge transfer collisions; Nem metastables:
diffusion and Penning ionization; Biagi cross-section database)

- absorbing electrodes
- cylindrical geometry with floating dielectric wall, wall charging

calculation is included

Implementation:
- Massively parallel implementation on NVIDIA GPUs using the CUDA-C

language extension.
- Speedup factor ~100 with respect to our CPU version using MPI

parallelizations, reducing simulation execution time from 3 months to 1
day

Implementation details: critical features

• Poisson Solver - GPU
• particle pusher - GPU
• data reduction - GPU atomic
• table search - GPU
• random number generator - GPU
• collision branching - GPU
• particle creation - GPU
• particle removal - CPU periodically

Implementation details:

Poisson solver: black-red  
successive over-relaxation

__global__ void cudo_half_SOR(float *__restrict__ pot, float *__restrict__ rho,
 int *__restrict__ boundary, int color, int calc_residual, float *__restrict__ residual){

 int Nz = Params.Nz;
 for(int ii = 0; ii < Params.BRn; ii++){

 int idx = blockIdx.x * Nz + 2*(threadIdx.x + ii*blockDim.x) + (color + blockIdx.x) % 2;

 if((idx < Params.N) && (boundary[idx] == 0)){

 int i = idx / Nz;
 int j = idx % Nz;
 float ir2 = Params.ir2;
 float iz2 = Params.iz2;
 float irdr = 0.0f;
 if (i > 0) irdr = 0.5f * ir2 / (float) i;
 float w = Params.w;
 //float sf = fmaxf((float)i, 0.125);
 float sf = 1.0f;
 int ln = abs(i-1);
 int rn = (i+1);
 float newpot = (1.0-w)*pot[idx]

 + w * ((ir2-irdr)*pot[ln*Nz+j] + (ir2+irdr)*pot[rn*Nz+j] + iz2*pot[idx-1] +
iz2*pot[idx+1]

 + Params.Poisson_factor/sf*rho[idx]) / (2.0*ir2 + 2.0*iz2);
 if(calc_residual == 1) residual[idx] = fabsf(newpot - pot[idx]);
 pot[idx] = newpot;
 //if (threadIdx.x == 0) printf("%.2e %.2e\n", ddd, newpot);
 }
 }
}

Superposition principle:  
only space-charge contribution

Implementation details:

Random number generator
__device__ float curand32_float(particle_type * seed){
 unsigned int u = seed[0].RS_u;
 unsigned int v = seed[0].RS_v;
 unsigned int w1 = seed[0].RS_w1;
 unsigned int w2 = seed[0].RS_w2;
 u = u * (unsigned int) 2891336453 + (unsigned int) 1640531513;
 v ^= v >> 13; v ^= v << 17; v ^= v >> 5;
 w1 = 33378 * (w1 & 0xffff) + (w1 >> 16);
 w2 = 57225 * (w2 & 0xffff) + (w2 >> 16);
 unsigned int x = u ^ (u << 9); x ^= x >> 17; x ^= x << 6;
 unsigned int y = w1 ^ (w1 << 17); y ^= y >> 15; y ^= y << 5;
 seed[0].RS_u = u;
 seed[0].RS_v = v;
 seed[0].RS_w1 = w1;
 seed[0].RS_w2 = w2;
 w1 = (x + v) ^ (y + w2);
 return 2.32830641E-10 * w1;
}

based on Numerical Recipes 3rd Ed.
CURAND turned out to be way to slow

struct particle_type{
 float x, y, r, z; // m
 float vx, vy, vz; // m/s
 float S; // Monte Carlo scatterint integral
 int coll; // collision type;
 unsigned int RS_u; // seed variables for RNG
 unsigned int RS_v; // seed variables for RNG
 unsigned int RS_w1; // seed variables for RNG
 unsigned int RS_w2; // seed variables for RNG
};

Implementation details: Data storage

particles: AoS

system parameters: constant memory in structure
struct PIC_Params_Type
{
 int Nr, Nz, N;
 float Dr, Dz;
 float iz2, ir2;
 float w, dt;
 float Lr, Lz;
 float ion_gamma;
 float Poisson_factor;
 float Metastable_factor;
 float cs_lE_min, cs_ldE;
 float temperature;
 float s2epm;
 int MAX_particles;
 int BRn;
 float weight;
 float charge_over_mass[N_species];
 int N_reactions[N_species];
 float mass_ratio[N_species];
 particle_type * pbuffer[N_species];

Performance
 ==19325== Profiling result:
 Type Time(%) Time Calls Avg Min Max Name
 GPU activities: 68.73% 6.08210s 800 7.6026ms 6.4353ms 8.7770ms cumove_particles(particle_type*, …)
 21.92% 1.93990s 124546 15.575us 13.665us 29.538us cudo_half_SOR(float*, …)
 3.55% 314.30ms 20002 15.713us 13.921us 23.937us cudo_half_SOR_meta(float*, …)
 3.40% 300.71ms 2045 147.04us 896ns 19.339ms [CUDA memcpy DtoH]
 2.21% 195.20ms 917 212.87us 608ns 87.543ms [CUDA memcpy HtoD]

Poisson Flops: 64 x 2048 x 22 / 0.000015 ≈ 200 G
Push Flops: 4.6M x 280 / 0.0076 ≈ 200 G
Data transfer per step: 4 MB

Real life performance:
Convergence can be reached in 1-2 days in contrast to the  
MPI-CPU version with a convergence time of 3 month.

