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Theoretical research and experiments suggest that the brain operates at or
near a critical state between sustained activity and an inactive phase,
exhibiting optimal computational properties (see: PRL 110, 178101 (2013))

Individual neurons emit periodic signals (PNAS 113 (2016) 3341) —
criticality at the synchronization transition point
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Kuramoto oscillator model (1975)

Kuramoto Oscillators
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oscillators, Phase-locking is governed by the coupling strength K and
the distribution of intrinisic frequencies w. Here, the intrinsic frequencies
were drawn from a normal distribution (h=0.8Hz, S0=0.5Hz). The yellow
disk marks the phase centroid. Its radius is a measure of coherence.

wj o is the intrinsic frequency of the i-th oscillator,
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Non-zero, above critical coupling strength K > K,
tends to zero for K < K_as R o< (1/N)**
or exhibits an initial growth: g Ny = N-1/2mf,.(¢/N?)  for incoherent initial state

Critical synchronization transition for D > 4 spatial dimensions,
which is mean-field like: i.e. D — oo (full graph)

The dynamical behavior suffers very strong corrections to scaling and chaoticity, see:

Robert Juhasz, Jeffrey Kelling and Géza Odor:
Critical dynamics of the Kuramoto model on sparse random networks
J. Stat. Mech. (2019) 053403



Test of Kuramoto model on sparse synthetic

networks

2D lattices of linear size L = 6000,
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periodic boundary conditions,

+ extra random long link between
connecting any edges: <k> = 5, .
90,000,000 edges
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realizations
Critical point located at K = 0.4773
Critical exponent: n = 0.35 (10)



Determination of desgfnchroniztion avalanche
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What do we know about neuron networks ?

The largest precisely explored structural networks contains
~302 neurons (C. Elegans) (very recently fruit fly is reported)

Connectomes, obtained by approximative methods like diffusion MRI
contain < 106 nodes (voxels)

Recently DMRI tractrography was confirmed by tract-tracing in ferret



Open Connectome Large Human graphs

Diffusion and structural MRI images with
1 mm3 voxel resolution :
105—-106 nodes

Hierarchical modular graphs
Top level: 70 brain region (Desikan atlas)

Lower levels: Deterministic tractography:
Fiber Assignment by Continuous Tracking
(FACT) algorithm

Map : voxel — vertex (~ 107)
fiber - edge (~ 10 10)
+ noise reduction — graph

undirected, weighted
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Small world, still finite dimensional, :
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The topology of large Open
Connectome networks for the

human brain

Michael T. Gastner? & Géza Odor?

The structural human connectome (i.e. the network of fiber connections in the brain) can be analyzed at
ever finer spatial resolution thanks to advances in neursimaging. Here we analyze several large data
sets forthe human brain network made available by the Open Connectome Project. We apply statistical
model selection to characterize the degree distributions of graphs containing up to ~+10% nodes and ~10"
edges. & three-parameter generalized Weibull (also known as a stretched exponential) distribution is a
good fit to most of the observed degree distributions. For almost all networks, simple power laws
cannot fit the data, but in some cases there is statistical support for power laws with an exponential
cutoff, We also calculate the topological (graph) dimension D and the small-world coefficient o of these
networks. While o suggests a small-world topology, we found that D < 4 showing that long-distance
connections provide only a small correction to the topology of the embedding three-dimensional space.
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Kuramoto solution for the KKI-18 graph with
N= 836 733 nodes and 41 523 931 weigthed edges

The synchronization transition point

0 —r
determined by growth as before ST A .; .
205 rm=—— | — %
KKI-18 has D = 3.05 <4 - BN — i
005 02 05 07 _—— 18
No real phase transition, crossover S0} g
Due to the fat-tailed link weight L
= . [ 1]
= E o4 1]
distribution, incoming weight | T o ae®
0 L R - 6, 20 7|
normalization is applied: ! " .

oo .'_' o 7. .
" .J " 1,5/ Z_J’E]mi;_{]]h.of i 4 1,7

K.=1.7 and growth exponent: 17 = 0.6(1)



Duration distribution for the KKI-18 graph

Measure characteristic times t, of first
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Histogramming of ¢, at the critical point

Critical exponent: 7, = 1.2 (1) 0
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Out of range of experiments :
1.5 <1, <24 (Palvaetal 2013)
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Inhibitory (negative) links compared to
experiments

Inhibitions: 5-20% of nodes: W, =W,

randomly
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Scaling elxgonent within experimental

range:

<T < 2.4

J.M. Palva et al PNAS 110 (2013) 3585
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K dependent scaling exponents:

Frustrated synchronization ?



Conclusions

Heterogeneity effects are considered on large human connectomes
and 2d + long range lattices of extremely large sizes

Kuramoto synchronziation equation is solved by 4% order Runge-Kutte
method, implemented on parallel GPU-s

In case of 2d + long range lattices we determined the temporal mean-
field like solution, with very strong corrections to scaling

De-synchronization characteristic exponent is found: 7, = 1.6 (1)

On the normalized, weighted KKI-18 graph, describing variable node
sensitivity, 7, = 1.2(1), out of experimental range

On the normalized, inhibitory KKI-18 graph 7, = 1.8(2), within

experimental range

Frustrated synchronization sub-critically !
Insensitivity to 5 - 20% link sign reversal, robustness

Details : G. Odor and J. Kelling: arXiv:1903.00385
R. Juhasz, G. O, J. K : J. Stat. Mech. (2019) 053403
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