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Theoretical research and experiments suggest that the brain operates at or 
near a critical state between sustained activity and an inactive phase, 
exhibiting optimal computational properties (see:  PRL 110, 178101 (2013))
   

Individual neurons emit periodic signals (PNAS 113 (2016) 3341) → 
criticality at the synchronization transition point



Kuramoto oscillator model (1975) 

  Order parameter : average phase: 

  Non-zero, above critical coupling strength K > K
c
, 

  tends to zero for K   K
c
 as R  (1/N)1/2 

  or exhibits an initial growth:                                           for incoherent initial state

  Critical synchronization transition for D > 4 spatial dimensions, 
  which is mean-field like: i.e. D →   (full graph)

  The dynamical behavior suffers very strong corrections to scaling and chaoticity, see:

   Róbert Juhász, Jeffrey Kelling and Géza Ódor:
   Critical dynamics of the Kuramoto model on sparse random networks
   J. Stat. Mech. (2019) 053403
                                                     



Test of Kuramoto model on sparse synthetic 
networks 

2D lattices of linear size L = 6000, 
periodic boundary conditions,
+ extra random long link between
 connecting any edges: <k> = 5,
 90,000,000 edges

Growth runs from random initial state
Runge-Kutta-4 parallelized for GPUs
Maximum time:  tmax = 1000,

average over: 10000 independent i 
realizations

Critical point located at K = 0.4773
Critical exponent:



Determination of desynchroniztion avalanche 
exponent 

t
 

Measure characteristic times tx of first

dip below:  Rc = (1/N)1/2

average over: 10,000 independent i 
realizations

Histogramming of  tx  at the critical 
point

Critical exponent:t
obtained by fitting for the PL tails



What do we know about neuron networks ? 

  The largest precisely explored structural networks contains 
~302 neurons (C. Elegans) (very recently fruit fly is reported) 

Connectomes, obtained by approximative methods  like diffusion MRI
contain  <  106  nodes (voxels)  

Recently DMRI tractrography was confirmed by tract-tracing in ferret



Open Connectome Large Human graphs

Diffusion and structural MRI images with 
1 mm3  voxel resolution : 
10 5 –10 6   nodes

Hierarchical modular graphs

Top level: 70 brain region (Desikan atlas) 

Lower levels: Deterministic tractography: 
Fiber Assignment by Continuous Tracking 
(FACT) algorithm 

Map : voxel → vertex (~ 10 7 )

           fiber → edge   (~ 10 10 )

+ noise reduction → graph 

  undirected, weighted



Small world, still finite dimensional,
non-scale free, 
universal modular graphs



Kuramoto solution for the KKI-18 graph with
N= 836 733 nodes and 41 523 931 weigthed edges 

The synchronization transition point

determined by growth as before

KKI-18 has D = 3.05 < 4  → 

No real phase transition, crossover

Due to the fat-tailed link weight 

distribution, incoming weight 

normalization is applied:

Kc =1.7 and growth exponent:  = 0.6(1)



Duration distribution for the KKI-18 graph

Measure characteristic times tx of first

dip below:  Rc = (1/N)1/2

average over: 10.000 independent i 

realizations

Histogramming of  tx  at the critical point

Critical exponent:t

obtained by fitting for the PL tails

Out of range of experiments : 
1.5 <t < 2.4  (Palva et al 2013) 



Inhibitory (negative) links compared to 
experiments

Scaling exponent within experimental 
range:   1.5 < 

t
 2.4

J.M. Palva et al PNAS 110 (2013) 3585 

Inhibitions: 5-20% of nodes: w
ij
 → -w

ij
randomly

K dependent scaling exponents:
Frustrated synchronization ?



Conclusions
Heterogeneity effects are considered on large human connectomes
and 2d + long range lattices of extremely large sizes
Kuramoto synchronziation equation is solved by 4th order Runge-Kutte 

method, implemented on parallel GPU-s
In case of 2d + long range lattices we determined the temporal mean-

field like solution, with very strong corrections to scaling
De-synchronization characteristic exponent is found: t 
On the normalized, weighted KKI-18 graph, describing variable node
sensitivity, tout of experimental range 
On the normalized, inhibitory KKI-18 graph twithin

experimental range 

Frustrated  synchronization sub-critically !
Insensitivity to 5 - 20% link sign reversal, robustness 

Details : G. Ódor and J. Kelling:  arXiv:1903.00385, 
              R. Juhasz, G. O, J. K :  J. Stat. Mech. (2019) 053403  
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