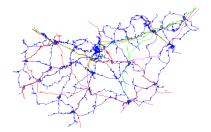
Solving the Kuramoto Oscillator Model of Power Grids on GPU

Lilla Barancsuk^{1,2} Bálint Hartmann^{1,2}, Jeffrey Kelling³, Géza Ódor²

¹Budapest University of Technology and Economics ²Centre for Energy Research ³Helmholtz-Zenter Dresden-Rossendorf

barancsuk.lilla@ek-cer.hu



Introduction: power grid in a nutshell

- Critical infrastructure
- Primarily powered by electromechanical generators www stability in frequency
- Recent increase in distributed production (renewables) www instability
- More frequent outages, extreme events

Modelling power grids for stability investigation

The topography of Hungarian transmission and sub-transmission networks

- ► Graph representation
- Complex, hierarchical networks
- Coupled oscillator model mathematical formulation using the Kuramoto model¹
- Outages:
 - line, node failures

¹Ódor & Hartmann: Power-Law Distributions of Dynamic Cascade Failures in Power-Grid Models. Entropy, Vol. 22, No. 6 (2020)

Problem formulation: the Kuramoto model

Modelling each node as an oscillator

Second-order Kuramoto equation

$$\ddot{\Phi}_i(t) = \omega_{i,0} - \alpha \dot{\Phi}_i(t) + \frac{K}{N} \sum_{j=1}^N A_{ij} \sin(\Phi_j(t) - \Phi_i(t))$$

- Φ_i angle of the ith oscillator
- N number of nodes
- K global coupling
- A_{ij} admittance matrix
- $ightharpoonup \alpha$ dissipation
- $\omega_{i,0}$ intrinsic frequencies (unit variance Gaussian distribution centered at 50 Hz)

Coupled non-linear ordinary differential equations $\ensuremath{\wp}\xspace$ numerical solution by integration

3

Implementation on GPU's

$$\ddot{\Phi}_{i}(t) = \omega_{i,0} - \alpha \dot{\Phi}_{i}(t) + \frac{K}{N} \sum_{j=1}^{N} A_{ij} \sin(\Phi_{j}(t) - \Phi_{i}(t))$$

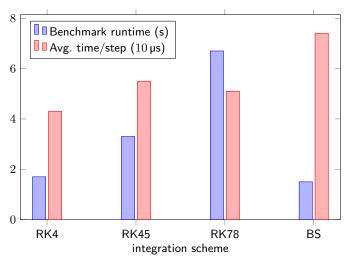
Implementation builds on the code of Jeffrey Kelling²

- First- and second-order Kuramoto model for arbitrary graphs
- Integration scheme: Runge-Kutta 4 (provided by boost::numeric::odeint³)
- Accelerator for odeint: VexCL library
- Special graph data structure for efficient memory access and load balancing on GPU

²Jeffrey Kelling: Solving the Kuramoto Oscillator Model on Random Graphs, GPU Day (2019)

³boost.org

Recent developments

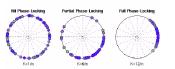

- Higher order integration schemes
- ▶ Line failure modelling by threshold cuts
- Stopping criteria for steady state
- ▶ In progress: region-specific analysis of the network

Integration schemes

We integrated additional adaptive steppers by boost::numeric::odeint

- Runge–Kutta Fehlberg 78
 - High order method with error estimation
 - Order: 8
 - Worst overall performance
- Runge–Kutta Cash–Karp 54
 - General scheme with error estimation
 - Order: 5
- Bulirsch–Stoer
 - Stepper with step size and order control
 - Very good if high precision is required
 - Best in terms of overall performance

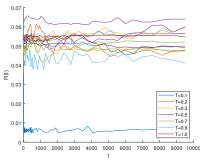
Stepper performance evaluation

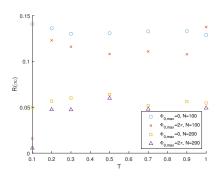


Benchmark: 2D lattice with 10000 nodes, for 100 time steps, precision: 10^{-4} . Using GeForce Titan GTX Black

Modelling outages: threshold line cuts

- Intentional line cuts for perturbing the network:
 - thermalization
 - setting A_{ij} from 1 to 0 for a predefined set of lines
 - analyse failure cascade
- Line overcurrent protection If power flow between nodes exceeds a threshold: $|\sin(\Phi_i \Phi_i)| > T \rightarrow A_{ij} = 0$
- Measuring synchronization with the Kuramoto order parameter


 $R(t) = \left\langle \frac{1}{N} \left| \sum_{i=1}^{N} \exp\left(i\Phi_{j}(t)\right) \right| \right\rangle$


Phase locking oscillators⁴

⁴Source: https://en.wikipedia.org/wiki/Kuramoto_model

Experimental results on a 2D lattice

2D lattice with 40000 nodes, starting from a steady state.

Summary

- Evaluating power grid vulnerability
- Second-order Kuramoto model
- Numerical solution using integration schemes
- Invoke line failures to analyse cascade phenomena
- Measure synchronization properties
- Perspectives:
 - Region-specific parameters (e.g. local order parameter)
 - Stability and vulnerability measures
 - Test with real and synthetic power networks
 - Validate the results by comparison with real-world outage statistics