Custom Tailored FPGA Boson Sampling

Gregory Morse [1] morse@inf.elte.hu

Tamás Kozsik [1] kto@elte.hu

Péter Rakyta [2] peter.rakyta@ttk. elte.hu

[1] Department of Programming Languages and Compilers,

[2] Department of Physics of Complex Systems, Eötvös Loránd Tudományegyetem/University (ELTE), Budapest, Hungary

Morse, Kozsik, Rakyta (ELTE)

FPGA Boson Sampling

GPUDay'22

Project Collaboration

Morse, Kozsik, Rakyta (ELTE)

FPGA Boson Sampling

Introduction

- Computing the permanent of a matrix finds an important application in the context of boson sampling
- BB/FG permanent formula with a reflected binary Gray code $\mathcal{O}(n.2^{n-1})$
- Run it in parallel on 4 SLRs (Super Logic Regions) $\mathcal{O}(n.2^{n-3})$
- Up to 40x40 matrix permanents @ 280MHz
- Dual FPGA specialized kernel with twice as fast operation
- Generalize to repeated rows/columns up to 40 photons @ 240MHz

Keywords: Boson Sampling, Matrix Permanent, FPGA, dataflow, Repeated Row and Column Permanent, Reflected N-ary Gray code

イロト イポト イヨト イヨト 二日

Real World Boson Sampling Setup

• QuiX Photonic Quantum Computer

Morse, Kozsik, Rakyta (ELTE)

FPGA Boson Sampling

Optimally Efficient Classical Permanent Algorithms

• BB/FG formula:

$$\operatorname{perm}(A) = \frac{1}{2^{m-1}} \sum_{\delta} \left(\prod_{k=1}^{m} \delta_k \right) \prod_{j=1}^{m} \sum_{i=1}^{m} \delta_i a_{i,j}, \tag{1}$$

where **A** is an $m \times m$ square matrix describing the interferometer and δ is a binary Gray code. Adaptable to sub-computations of repeated-row rectangular permanents.

• With independent repeated rows and columns:

 $\operatorname{perm}(\boldsymbol{A}, \boldsymbol{M}, \boldsymbol{N}) = \frac{1}{2^{n-1}} \sum_{\boldsymbol{\Delta}} \left(\prod_{k=1}^{m} (-1)^{\Delta_k} {M_k \choose \Delta_k} \right) \prod_{j=1}^{m} \left(\sum_{k=1}^{m} (M_k - 2\Delta_k) a_{k,j} \right)^{N_j}$ (2)

M and **N** are the row and column multiplicities respectively such that the photon count $n = \sum M_i = \sum N_j$ and Δ is the n-ary Gray code, required for efficient computation.

Morse, Kozsik, Rakyta (ELTE)

<ロト <回ト < 回ト < 回ト = 三日

Xilinx Alveo U250 FPGA and Maxeler MaxCompiler 2021.1

PCIExpress clock operates at 250MHz, initialization limitation 16nm Ultrascale+ architecture, Vivado compiler supporting up to 500MHz

MAXELER a grog company

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Accuracy of single and double precision floating vs. normalized fixed point

- We developed a GNU MPFR (multi-precision floating point reliability library) infinite precision wrapper to check accuracy with realistic data as part of **Piquasso Boost** extension to piquasso **PIQUASSO**
- Single/double precision CPU variants use 4M+2A complex multiplication (a + bi)(c + di) = (ac bd) + (bc + ad)i
- Infinite Precision and FPGA variants use Knuth 3M+5A complex multiplication x = c(a+b), (x-b(c+d)) + (x+a(d-c))i
- Complex number normalization computed by worst-case column sums using a Euclidean vector inspired technique, keeping all computations $-1 \le a, b, |a + bi| \le 1$

• Outer sum of BB/FG precise number of bits determined $\frac{\max(\sum_{k=0}^{\lfloor (n-1)/2 \rfloor} (2(2k+2)-n)^n {\binom{n-1}{2k+1}}, \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} (2(2k+1)-n)^n {\binom{n-1}{2k}}}{n^n} \text{ for } n = 40, \text{ then}$ $\pm 27 \text{ is maximum partial sum requiring 6 integer bits (including sign)}$

Design

- Time complexity: $\mathcal{O}(2^{n-1-k})$ where k = 2 for single, k = 3 for dual
- Area: $\mathcal{O}(n^2)$ dominated by matrix storage in FFs (flip-flops)
- Multiplication area based on a product tree with Karatsuba rectangular tiling to match the 18x25 signed DSP multipliers of the FPGA O(blog b) where tree depth is 6: 20 (b=64-bit) -> 10 (93-bit) -> 5 (110-bit) -> 2 (127-bit) -> 1 (127-bit) -> 1 (127-bit)

Repeated Row/Column Design

		Counter Chain	DEGC	Gray Code (GC)	bi
		(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	1
• D	officiated Nilson Crass	(1, 0, 0)	(1, 0, 0)	(1, 0, 0)	1
• r	ellected N-ary Gray	(0, 1, 0)	(2, 1, 0)	(1, 1, 0)	2
CC	ode (using direction	(1, 1, 0)	(3, 1, 0)	(0, 1, 0)	2
۵r	coding (DE))	(0, 2, 0)	(0, 2, 0)	(0, 2, 0)	1
ei		(1, 2, 0)	(1, 2, 0)	(1, 2, 0)	1
• B	inomial coefficients	(0, 0, 1)	(2, 3, 1)	(1, 2, 1)	2
c	omputed with a loop	(1, 0, 1)	(3, 3, 1)	(0, 2, 1)	2
1.	noth O division by	(0, 1, 1)	(0, 4, 1)	(0, 1, 1)	4
ie	ngtn=9, division by	(1, 1, 1)	(1, 4, 1)	(1, 1, 1)	4
"r	nagic number"	(0, 2, 1)	(2, 5, 1)	(1, 0, 1)	2
m	ultiplication	(1, 2, 1)	(3, 5, 1)	(0, 0, 1)	2
	· · · · · · · · · · · · · · · · · · ·	(0, 0, 2)	(0, 0, 2)	(0, 0, 2)	1
	• Incremental update	(1, 0, 2)	(1, 0, 2)	(1, 0, 2)	1
	by Gray code	(0, 1, 2)	(2, 1, 2)	(1, 1, 2)	2
	decreasing	(1, 1, 2)	(3, 1, 2)	(0, 1, 2)	2
	$b_i = \frac{b_{i-1} \times k}{k}$	(0, 2, 2)	(0, 2, 2)	(0, 2, 2)	1
	$\nu_i = \frac{1}{n-k+1}$	(1, 2, 2)	(1, 2, 2)	(1, 2, 2)	1
	otherwise	,	,		U

Table: Example for Non-Anchor Row Multiplicities (1, 2, 2) with 3x3x2=18 values

< □ > < /□ >

• Staggering the Gray code at even intervals

 $b_i = \frac{b_{i-1} \times (n-k)}{k+1}$

Morse, Kozsik, Rakyta (ELTE)

FPGA Boson Sampling

GPUDay'22

Accuracy CPU vs Digital Front End (DFE) to FPGA

Morse, Kozsik, Rakyta (ELTE)

FPGA Boson Sampling

GPUDay'22

Performance of 280MHz single and dual array

 Initialization delay crossover threshold for single and dual marked based on precise long double calculators

Morse, Kozsik, Rakyta (ELTE)

FPGA Boson Sampling

GPUDay'22

FPGA Batching Advantage

- Batches reduce the cross-over threshold
- Kernels designed for automatic control signal resetting/counter wrapping

Morse, Kozsik, Rakyta (ELTE)

FPGA Boson Sampling

GPUDay'22

Performance of 240MHz for repeated permanents

Morse, Kozsik, Rakyta (ELTE)

FPGA Boson Sampling

GPUDay'22

FPGA Batching Advantage for repeated permanents

Batch size *n* based on realistic use case Faster classical Boson Sampling (Clifford and Clifford 2018)

 Ouput state/row multiplicity fixed over batch of changing input states/column multipicities
 GPUDay'22
 14/19

Performance of 240MHz for repeated permanents

 DFE variants have clearly become best performing

Morse, Kozsik, Rakyta (ELTE)

FPGA Boson Sampling

GPUDay'22

FPGA Batching Advantage for repeated permanents

Time, Area and Power Analysis

- FPGA image upload time: 56.2 seconds for single, 112.9 seconds for dual
- Actual runtime: $t = t_0 + \frac{n-1+2^{n-1-k}}{f}$ so for 280MHz dual on a 40x40 matrix: $\frac{40-1+2^{36}}{280 \times 1000000} = 245$ seconds
- Effective equivalent: $\frac{(C_A+C_M)*280*10^6}{10^9}$ where $C_A = 2A = 2*(40+4)$ and $C_M = 4M + 2A = 6*4*39$ represent complex addition and multiplication respectively, yielding 285.5 GFLOPS for single mode
- Power estimate (in KWh): $\frac{w*t}{60*60*1000}$ so for 280MHz single on a 40x40 matrix: $\frac{14.83 \times 490}{3600000} = 0.002$ KWh

```
FINAL POWER REPORT
Total On-Chip Power (W) 14.83 (budget: 135.00)
Dynamic Power (W)
                 11.56
Device Static Power(W) 3.27
     RESOURCE USAGE
FPGA: xcU250 - FIGD2104 - 2L - E
                  2029689 / 5184000 (39.15%)
Logic utilization:
                    741862
 LUTs:
                                1728000
                                         (42.93\%)
 Primary FFs:
              1287827
                                3456000
                                         (37.26\%)
DSP blocks:
                         8304 / 12288
                                         (67.58%)
Block memory (BRAM18):
                                         (12.03\%)
                      647 / 5376
Block memory (URAM):
                          126 / 1280
                                         (9.84\%)
```

Morse, Kozsik, Rakyta (ELTE)

Aerial View

• After careful pipelining and reducing fanout, streams become the largest routing issue

Morse, Kozsik, Rakyta (ELTE)

FPGA Boson Sampling

GPUDay'22

イロト イヨト イヨト イヨト

Conclusion and Future Research

- FPGAs are competitive for multiplication intensive implementations
- State-of-the-art algorithms are often needed for maximizing resources, cannot rely on default implementations
- Computation of the Loop Hafnian using GroqCard in concert with data preparation on the FPGA

Morse, Kozsik, Rakyta (ELTE)

< □ > < 同 > < 回 > < 回 > < 回 >