pCT Image Reconstruction – A Huge Linear Problem

Ákos Sudár^{1,2} Gergely Gábor Barnaföldi¹, Mónika Varga-Kőfaragó¹ and Légrády Dávid²

¹ Wigner Research Centre for Physics
 ² Budapest University of Technology and Economics

GPU Day 2022 – Massive parallel computing for science and industrial application Budapest, 20. June 2022

Motivation and role of proton imaging

- Nowadays the importance of the proton therapy is increasing
 ⇒ more and more motivation to improve the technology
- The use of proton CT images is a promising direction
 - \Rightarrow lower inaccuracy in RSP measurement
 - \Rightarrow decreased safety zone around the tumour
- A pCT image measures the relative stopping power (RSP) distribution of the patient

Bergen pCT collaboration

- Goal: reach the clinical research with a pCT prototype
- Apply monolithic active pixel sensors (MAPS)
- Use pencil beam for imaging
- Measure 10^6 proton / second
- Reach < 1 % RSP error

Image reconstruction – a large linear problem

The image reconstruction is a large and sparse linear problem:

$$\mathbf{y} = \mathbf{A} \mathbf{x}$$
,

where:

- y is the measured data
- x is the vector of voxels
- A is the system matrix, contains the intaraction coefficients
 - practically the path length of protons in the voxel
 - can have 10^{12} non zero element about 12 Tbyte \Rightarrow on the fly calculation of the element instead of store them
 - matrix element become a function: $A_{i,j} \Rightarrow A(i,j)$

Hardware

Hardware:

- 4 piece of Nvidia 1080Ti
- computer capability: 6.1
- CUDA version: 11.2

Reconstructed Derenzo phantom

Reconstructed Derenzo phantom after 250 iterations:

- Without errors:
 - Exactly restored image
- With errors:
 - Reasonably good spatial resolution
 - Point spread function
 FWHM = 4.3 mm
 - Acceptable RSP accuracy

Development 1 – Optimize the memory access

First implementation

- Variables in GPU memory
- Access during use
 ⇒ not coalesced access
 ⇒ access each data
 multiplied times

Optimized memory access

- Variables in GPU memory
- Copy to shared memory
 - \Rightarrow coalesced access
 - \Rightarrow access each data

once per thread block

Summary

The steps of the optimization:

Phase	Exp. time (h)	State
Dirty but working	~ 100000	Finished
Coalesced memory access	6494	In progress
Minimized calculations	269	Planned
Optimized algorithm	2.7	Planned

Thank you for your attention!

I would like to thank the support of the Hungarian National Research, Development and Innovation Office (NKFIH) grants under the contract numbers OTKA K135515 and 2019-2.1.6-NEMZ_KI-2019-00011. Computational resources were provided by the Wigner Scientific Computing Laboratry.

Backup slides

Backup slides

Image reconstruction – Richardson – Lucy algorithm

- Originally introduced for astrophysics application
- It is a fixed point iteration for large and sparse linear problems
- Initialization: arbitrary positive vector
- Init: unit vector or precalculated approximate solution

The formula for the i^{th} element of the next image vector:

$$x_{i}^{k+1} = x_{i}^{k} \frac{1}{\sum_{j} A_{i,j}} \sum_{j} \frac{y_{j}}{\sum_{l} A_{l,j} x_{l}^{k}} A_{i,j} ,$$

where k is the number of iteration. 20-300 iteration is typical.

Parallelization & avoidance of multiply calculations

Update the i^{th} voxel in the k^{th} iteration:

Pre-calculate the normalization of the *i*th voxel:

$$N_i = \frac{1}{\sum_j A(i,j)}$$

Parallelization & avoidance of multiply calculations

Update the i^{th} voxel in the k^{th} iteration:

 $R_i = 0$. For i^{th} voxel and j^{th} proton history:

$$R_i^k + = \frac{y_j}{\sum_l A(l,j)x_l^k}A(i,j)$$

Parallelization & avoidance of multiply calculations

Update the i^{th} voxel in the k^{th} iteration:

$$x_i^{k+1} = x_i^k N_i R_i^k$$

First: Calculate the Hadamard ratio (once per iteration):

$$H_j^k = \frac{y_j}{\sum\limits_l A(l,j) x_l^k}$$

Second: $R_i = 0$. For i^{th} voxel and j^{th} proton history:

$$R_i^k + = H_j^k A(i,j)$$

GPU algorithm

Algorithm 1 GPU algorithm

- 1: GPU: calculate voxel normalization
- 2: for needed number of iterations do
- 3: while end of proton histories do
- 4: **CPU:** read certain amount of proton histories
- 5: **GPU:** calculate Hadamard ratio:
 - parallel calculation of proton histories
 - serial calculation of voxel interactions
- 6: **GPU:** calculate voxel contribution
 - serial calculation of proton histories
 - parallel calculation of voxel interactions
- 7: **GPU:** Update the image vector
- 8: end while
- 9: end for
- 10: CPU: Save the image vector