Critical synchronization dynamics on power grids

Joint work with Géza Ódor, Bálint Hartmann and Jeffrey Kelling

Shengfeng Deng

Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungary

Wigner GPU Day 2022

June 21, 2022

Centre for Energy Research

arxiv:2205.13472

Introduction •000 Power-grid networks Methods and results

Summary O

Power-grid networks

• Power grids are critical for human civilization: generating, transmitting and distributing electric energy

Introduction •000 Power-grid networks Methods and results

Summary O

Power-grid networks

- Power grids are critical for human civilization: generating, transmitting and distributing electric energy
- Hierarchical: high medium low voltages, millions of nodes
- Crutial to maintain stability Challenges: nonlinear&complex system, multiple scales, growing number of renewables

Consequences of blackouts and their statistics

Article •	People affected (millions)	Location •	Date -	References
2021 Pakistan blackout	200 (90% population)	Pakistan	January 9, 2021	151
2019 Java blackout	120	Indonesia	August 4-5, 2019	[8][9][10][11]
2020 Sri Lankan blackouts	21	Sri Lanka	August 17th, 2020	[56]
2019 Argentina, Paraguay and Uruguay blackout	48	Argentina, Paraguay, Uruguay	June 16, 2019	[18]
2019 Venezuelan blackouts	30	Venezuela	March 7, 2019–July 23, 2019	[25][23][24][25]
2016 Sri Lanka blackout	21	Sri Lanka	March 13, 2016	[27]
2015 Turkey blackout	70	Turkey	March 31, 2015	[14]
2015 Pakistan blackout	140	Pakistan	January 26, 2015	[7]
2014 Bangladesh blackout	150	Bangladesh	November 1, 2014	[6]
2012 India blackouts	620	India	July 30-31, 2012	[1][2][3]
2009 Brazil and Paraguay blackout	60	Brazil, Paraguay	November 1020, 2009	[15]
2005 Java-Bali blackout	100	Indonesia	August 18, 2005	[12]
2003 Italy blackout	56	Italy, Switzerland	September 28, 2003	[16]
Northeast blackout of 2003	55	Canada, United States	August 14-28, 2003	[17]
2005 Java-Ball blackout 2003 Italy blackout Northeast blackout of 2003	100 56 55	Indonesia Italy, Switzerland Canada, United States	August 18, 2005 September 28, 2003 August 14–28, 2003	(12) (16) (17)

 $en.wikipedia.org/wiki/List_of_major_power_outages$

¹B. Carreras *et al.*, IEEE 33rd conference on system sciences (2000).

²I. Dobson et al., Chaos 17, 026103 (2007).

Consequences of blackouts and their statistics

Figure 4. Probability distribution function of energy unserved for North American blackouts 1993-1998.

Article •	People affected (millions)	Location •	Date -	References
2021 Pakistan blackout	200 (90% population)	Pakistan	January 9, 2021	[5]
2019 Java blackout	120	Indonesia	August 4-5, 2019	[8][9][10][11]
2020 Sri Lankan blackouts	21	Sri Lanka	August 17th, 2020	[56]
2019 Argentina, Paraguay and Uruguay blackout	48	Argentina, Paraguay, Uruguay	June 16, 2019	[18]
2019 Venezuelan blackouts	30	Venezuela	March 7, 2019–July 23, 2019	[\$\$][\$3][\$4][\$5]
2016 Sri Lanka blackout	21	Sri Lanka	March 13, 2016	[27]
2015 Turkey blackout	70	Turkey	March 31, 2015	[14]
2015 Pakistan blackout	140	Pakistan	January 26, 2015	[7]
2014 Bangladesh blackout	150	Bangladesh	November 1, 2014	[6]
2012 India blackouts	620	India	July 30-31, 2012	(10303)
2009 Brazil and Paraguay blackout	60	Brazil, Paraguay	November 10-20, 2009	[15]
2005 Java-Bali blackout	100	Indonesia	August 18, 2005	[12]
2003 Italy blackout	56	Italy, Switzerland	September 28, 2003	[16]
Northeast blackout of 2003	55	Canada, United States	August 14-28, 2003	[17]

en.wikipedia.org/wiki/List_of_major_power_outages

¹B. Carreras *et al.*, IEEE 33rd conference on system sciences (2000).

²I. Dobson et al., Chaos 17, 026103 (2007).

Consequences of blackouts and their statistics

Figure 4. Probability distribution function of energy unserved for North American blackouts 1993-1998.

Source	Exponent	Quantity
North America data (Ref. 6)	-1.3 to -2.0	Various
North America data (Refs. 19 and 20)	-2.0	Power
Sweden data (Ref. 21)	-1.6	Energy
Norway data (Ref. 22)	-1.7	Power
New Zealand data (Ref. 23)	-1.6	Energy
China data (Ref. 24)	-1.8	Energy
	-1.9	Power
OPA model on tree-like 382-node (Ref. 8)	-1.6	Power
Hidden failure model on WSCC 179-node (Ref. 9)	-1.6	Power
Manchester model on 1000-node (Ref. 10)	-1.5	Energy
CASCADE model (Ref. 11)	-1.4	No. of failures
Branching process model (Ref. 12)	-1.5	No. of failures

Article •	People affected (millions)	Location •	Date -	References
2021 Pakistan blackout	200 (90% population)	Pakistan	January 9, 2021	151
2019 Java blackout	120	Indonesia	August 4-5, 2019	[8][9][10][11]
2020 Sri Lankan blackouts	21	Sri Lanka	August 17th, 2020	[56]
2019 Argentina, Paraguay and Uruguay blackout	48	Argentina, Paraguay, Uruguay	June 16, 2019	[18]
2019 Venezuelan blackouts	30	Venezuela	March 7, 2019–July 23, 2019	[55][53][54][55]
2016 Sri Lanka blackout	21	Sri Lanka	March 13, 2016	[27]
2015 Turkey blackout	70	Turkey	March 31, 2015	[14]
2015 Pakistan blackout	140	Pakistan	January 26, 2015	[7]
2014 Bangladesh blackout	150	Bangladesh	November 1, 2014	[6]
2012 India blackouts	620	India	July 30-31, 2012	[1][2][3]
2009 Brazil and Paraguay blackout	60	Brazil, Paraguay	November 1020, 2009	[15]
2005 Java-Bali blackout	100	Indonesia	August 18, 2005	[12]
2003 Italy blackout	56	Italy, Switzerland	September 28, 2003	[16]
Northeast blackout of 2003	55	Canada, United States	August 14-28, 2003	[17]

en.wikipedia.org/wiki/List_of_major_power_outages

- Blackout size dist. follow power laws
- Extreme events occur more frequently than predicted by Gaussian models

¹B. Carreras *et al.*, IEEE 33rd conference on system sciences (2000).

Consequences of blackouts and their statistics

Figure 4. Probability distribution function of energy unserved for North American blackouts 1993-1998.

Source	Exponent	Quantity
North America data (Ref. 6)	-1.3 to -2.0	Various
North America data (Refs. 19 and 20)	-2.0	Power
Sweden data (Ref. 21)	-1.6	Energy
Norway data (Ref. 22)	-1.7	Power
New Zealand data (Ref. 23)	-1.6	Energy
China data (Ref. 24)	-1.8	Energy
	-1.9	Power
OPA model on tree-like 382-node (Ref. 8)	-1.6	Power
Hidden failure model on WSCC 179-node (Ref. 9)	-1.6	Power
Manchester model on 1000-node (Ref. 10)	-1.5	Energy
CASCADE model (Ref. 11)	-1.4	No. of failures
Branching process model (Ref. 12)	-1.5	No. of failures

Article •	People affected (millions)	Location •	Date -	References
2021 Pakistan blackout	200 (90% population)	Pakistan	January 9, 2021	151
2019 Java blackout	120	Indonesia	August 4-5, 2019	[8][9][10][11]
2020 Sri Lankan blackouts	21	Sri Lanka	August 17th, 2020	[56]
2019 Argentina, Paraguay and Uruguay blackout	48	Argentina, Paraguay, Uruguay	June 16, 2019	[18]
2019 Venezuelan blackouts	30	Venezuela	March 7, 2019–July 23, 2019	[55][53][54][55]
2016 Sri Lanka blackout	21	Sri Lanka	March 13, 2016	[27]
2015 Turkey blackout	70	Turkey	March 31, 2015	[14]
2015 Pakistan blackout	140	Pakistan	January 26, 2015	[7]
2014 Bangladesh blackout	150	Bangladesh	November 1, 2014	[6]
2012 India blackouts	620	India	July 30-31, 2012	[1][2][3]
2009 Brazil and Paraguay blackout	60	Brazil, Paraguay	November 1020, 2009	[15]
2005 Java-Bali blackout	100	Indonesia	August 18, 2005	[12]
2003 Italy blackout	56	Italy, Switzerland	September 28, 2003	[16]
Northeast blackout of 2003	55	Canada, United States	August 14-28, 2003	[17]

en.wikipedia.org/wiki/List_of_major_power_outages

- Blackout size dist. follow power laws
- Extreme events occur more frequently than predicted by Gaussian models
- Self-Organized Criticality (SOC), DC threshold model

¹B. Carreras *et al.*, IEEE 33rd conference on system sciences (2000).

Consequences of blackouts and their statistics

Figure 4. Probability distribution function of energy unserved for North American blackouts 1993-1998.

Source	Exponent	Quantity
North America data (Ref. 6)	-1.3 to -2.0	Various
North America data (Refs. 19 and 20)	-2.0	Power
Sweden data (Ref. 21)	-1.6	Energy
Norway data (Ref. 22)	-1.7	Power
New Zealand data (Ref. 23)	-1.6	Energy
China data (Ref. 24)	-1.8	Energy
	-1.9	Power
OPA model on tree-like 382-node (Ref. 8)	-1.6	Power
Hidden failure model on WSCC 179-node (Ref. 9)	-1.6	Power
Manchester model on 1000-node (Ref. 10)	-1.5	Energy
CASCADE model (Ref. 11)	-1.4	No. of failures
Branching process model (Ref. 12)	-1.5	No. of failures

Article •	People affected (millions)	Location •	Date -	References
2021 Pakistan blackout	200 (90% population)	Pakistan	January 9, 2021	151
2019 Java blackout	120	Indonesia	August 4-5, 2019	[8][9][10][11]
2020 Sri Lankan blackouts	21	Sri Lanka	August 17th, 2020	[56]
2019 Argentina, Paraguay and Uruguay blackout	48	Argentina, Paraguay, Uruguay	June 16, 2019	[18]
2019 Venezuelan blackouts	30	Venezuela	March 7, 2019–July 23, 2019	[55][53][54][55]
2016 Sri Lanka blackout	21	Sri Lanka	March 13, 2016	[27]
2015 Turkey blackout	70	Turkey	March 31, 2015	[14]
2015 Pakistan blackout	140	Pakistan	January 26, 2015	[7]
2014 Bangladesh blackout	150	Bangladesh	November 1, 2014	[6]
2012 India blackouts	620	India	July 30-31, 2012	[1][2][3]
2009 Brazil and Paraguay blackout	60	Brazil, Paraguay	November 10-20, 2009	[15]
2005 Java-Bali blackout	100	Indonesia	August 18, 2005	[12]
2003 Italy blackout	56	Italy, Switzerland	September 28, 2003	[16]
Northeast blackout of 2003	55	Canada, United States	August 1428, 2003	[17]

en.wikipedia.org/wiki/List_of_major_power_outages

- Blackout size dist. follow power laws
- Extreme events occur more frequently than predicted by Gaussian models
- Self-Organized Criticality (SOC), DC threshold model
- Objective: modeling AC systems

¹B. Carreras *et al.*, IEEE 33rd conference on system sciences (2000).

Consequences of blackouts and their statistics

Figure 4. Probability distribution function of energy unserved for North American blackouts 1993-1998.

Source	Exponent	Quantity
North America data (Ref. 6)	-1.3 to -2.0	Various
North America data (Refs. 19 and 20)	-2.0	Power
Sweden data (Ref. 21)	-1.6	Energy
Norway data (Ref. 22)	-1.7	Power
New Zealand data (Ref. 23)	-1.6	Energy
China data (Ref. 24)	-1.8	Energy
	-1.9	Power
OPA model on tree-like 382-node (Ref. 8)	-1.6	Power
Hidden failure model on WSCC 179-node (Ref. 9)	-1.6	Power
Manchester model on 1000-node (Ref. 10)	-1.5	Energy
CASCADE model (Ref. 11)	-1.4	No. of failures
Branching process model (Ref. 12)	-1.5	No. of failures

Article •	People affected (millions)	Location •	Date -	References
2021 Pakistan blackout	200 (90% population)	Pakistan	January 9, 2021	[5]
2019 Java blackout	120	Indonesia	August 4-5, 2019	[8][9][10][11]
2020 Sri Lankan blackouts	21	Sri Lanka	August 17th, 2020	[56]
2019 Argentina, Paraguay and Uruguay blackout	48	Argentina, Paraguay, Uruguay	June 16, 2019	[18]
2019 Venezuelan blackouts	30	Venezuela	March 7, 2019–July 23, 2019	[22][23][24][25]
2016 Sri Lanka blackout	21 Sri Lanka		March 13, 2016	[27]
2015 Turkey blackout	70	Turkey	March 31, 2015	[14]
2015 Pakistan blackout	140	Pakistan	January 26, 2015	[7]
2014 Bangladesh blackout	150	Bangladesh	November 1, 2014	161
2012 India blackouts	620	India	July 30-31, 2012	1.053030
2009 Brazil and Paraguay blackout	60	Brazil, Paraguay	November 10-20, 2009	[15]
2005 Java-Bali blackout	100	Indonesia	August 18, 2005	[12]
2003 Italy blackout	56	Italy, Switzerland	September 28, 2003	[16]
Northeast blackout of 2003	55	Canada, United States	August 14-28, 2003	[17]

en.wikipedia.org/wiki/List_of_major_power_outages

- Blackout size dist. follow power laws
- Extreme events occur more frequently than predicted by Gaussian models
- Self-Organized Criticality (SOC), DC threshold model
- Objective: modeling AC systems

<code>blackout \rightarrow AC desynchronization cascade \sim DC threshold models</code>

¹B. Carreras *et al.*, IEEE 33rd conference on system sciences (2000).

US and EU HV grids

	N	Е	L	$\langle k \rangle$	С	σ	d
US	4194	6594	18.7	2.67	0.08	9.334	3.0(1)
EU	13478	33844	49.51	2.51	0.089	98.63	2.6(1)

- N: Number of nodes
- E: Number of edges
- L: average shortest path length
- C: Watts-Strogatz clustering coefficient

$$C = \frac{1}{N} \sum_{i} 2n_i / k_i (k_i - 1)$$

 σ :

$$\sigma = \frac{C/C_{r}}{L/L_{r}}$$

- \Rightarrow EU HV is small world.
 - This study will focus on HV nets.

¹ G. Ódor and B. Hartmann. Phys. Rev. E, **98** 022305 (2018).

HV: from operators MV an LV: generated w.r.t. empirical electrical distributions 1 .

The synchronization model

• Blackouts can be modeled by desynchronization of AC power grids

¹ G. Filatrella et al., Eur. Phys. J. B, 61, 485-491 (2008).

Introduction			Methods and results	
0000				
Power-grid networks				

The synchronization model

• Blackouts can be modeled by desynchronization of AC power grids

¹ G. Filatrella et al., Eur. Phys. J. B, 61, 485-491 (2008).

Introduction 000 Power-grid networks

The synchronization model

- Blackouts can be modeled by desynchronization of AC power grids
- Power transmission: a mismatch " $\Delta \theta$ " in the phases between "G" and "M" \Rightarrow the Kuramoto model with **inertia** ¹:

$$P_{\text{source}} = P_{\text{acc.kinetic}} + P_{\text{diss.}} + P_{\text{transmitted}}$$

$$= \frac{1}{2} I \frac{d}{dt} \dot{\theta}_{1}^{2} + P_{\text{diss.}} - P^{\text{MAX}} \sin(\Delta \theta)$$

$$\Rightarrow \ddot{\theta}_{1} = P - \alpha \dot{\theta}_{1} + P^{\text{MAX}} \sin(\Delta \theta). \quad (1) \quad ($$

¹ G. Filatrella et al., Eur. Phys. J. B, **61**, 485–491 (2008).

Introduction 000 Power-grid networks

The synchronization model

- Blackouts can be modeled by desynchronization of AC power grids
- Power transmission: a mismatch " $\Delta \theta$ " in the phases between "G" and "M" \Rightarrow the Kuramoto model with **inertia** ¹:

• For a network of N oscillators:

$$\dot{\theta}_i(t) = \omega_i(t)$$

$$\dot{\omega}_i(t) = \omega_i(0) - \alpha \dot{\theta}_i(t) + K \sum_{j=1}^N A_{ij} \sin \left[\theta_j(t) - \theta_i(t)\right].$$
(2)

 $\alpha:$ damping factor; K: global coupling; $\omega_{\textit{i}}(0) \sim \textit{N}(0,1)$

¹ G. Filatrella et al., Eur. Phys. J. B, **61**, 485–491 (2008).

• For large *N*, solved Eqs. (2) by numeric solvers: 4th-order Runge-Kutta, Bulirsch-Stoer

¹ H. Hong et al., Phys. Rev. E, **72**, 036217 (2005).

² G. Ódor and B. Hartmann. Phys. Rev. E, **98** 022305 (2018).

- For large *N*, solved Eqs. (2) by numeric solvers: 4th-order Runge-Kutta, Bulirsch-Stoer
- For large K: adaptive Bulirsch-Stoer

¹ H. Hong et al., Phys. Rev. E, **72**, 036217 (2005).

² G. Ódor and B. Hartmann. Phys. Rev. E, **98** 022305 (2018).

- For large *N*, solved Eqs. (2) by numeric solvers: 4th-order Runge-Kutta, Bulirsch-Stoer
- For large K: adaptive Bulirsch-Stoer
- GPU code (kuramotoGPU) by utilizing VexCL's vector capability.

¹ H. Hong et al., Phys. Rev. E, **72**, 036217 (2005).

² G. Ódor and B. Hartmann. Phys. Rev. E, **98** 022305 (2018).

- For large *N*, solved Eqs. (2) by numeric solvers: 4th-order Runge-Kutta, Bulirsch-Stoer
- For large K: adaptive Bulirsch-Stoer
- GPU code (kuramotoGPU) by utilizing VexCL's vector capability.

¹ H. Hong et al., Phys. Rev. E, **72**, 036217 (2005).

² G. Ódor and B. Hartmann. Phys. Rev. E, **98** 022305 (2018).

- For large *N*, solved Eqs. (2) by numeric solvers: 4th-order Runge-Kutta, Bulirsch-Stoer
- For large K: adaptive Bulirsch-Stoer
- GPU code (kuramotoGPU) by utilizing VexCL's vector capability.

Measured quantities

Phase order parameter

$$z(t_k) = \frac{1}{N} \left| \sum_{j} \exp\left[i\theta_j(t_k)\right] \right|$$
$$R(t_k) = \langle r(t_k) \rangle.$$
(3)

2 Frequency variance: $\Omega(t_k) = \langle \operatorname{var}(\omega_i(t_k)) \rangle$.

¹ H. Hong et al., Phys. Rev. E, 72, 036217 (2005).

² G. Ódor and B. Hartmann. Phys. Rev. E, **98** 022305 (2018).

- For large N, solved Eqs. (2) by numeric solvers: 4th-order Runge-Kutta, Bulirsch-Stoer
- For large K: adaptive Bulirsch-Stoer
- GPU code (kuramotoGPU) by utilizing VexCL's vector capability.
- Partial synchronization in d < d_l = 4^{1,2}; hysteresis curve ⇒ first-order transition.
- Measured quantities

$$z(t_k) = \frac{1}{N} \left| \sum_{j} \exp\left[i\theta_j(t_k) \right] \right|$$
$$R(t_k) = \langle r(t_k) \rangle.$$
(3)

2 Frequency variance: $\Omega(t_k) = \langle \operatorname{var}(\omega_i(t_k)) \rangle$.

¹ H. Hong et al., Phys. Rev. E, 72, 036217 (2005).

² G. Ódor and B. Hartmann. Phys. Rev. E, **98** 022305 (2018).

- For large N, solved Eqs. (2) by numeric solvers: 4th-order Runge-Kutta, Bulirsch-Stoer
- For large K: adaptive Bulirsch-Stoer
- GPU code (kuramotoGPU) by utilizing VexCL's vector capability.
- Partial synchronization in d < d_l = 4^{1,2}; hysteresis curve ⇒ first-order transition.
- Measured quantities

$$z(t_k) = \frac{1}{N} \left| \sum_{j} \exp\left[i\theta_j(t_k) \right] \right|$$
$$R(t_k) = \langle r(t_k) \rangle.$$
(3)

Solution Frequency variance: $\Omega(t_k) = \langle \operatorname{var}(\omega_i(t_k)) \rangle$.

• Thermalization followed by removing one link \Rightarrow cascade line failures.

¹ H. Hong et al., Phys. Rev. E, 72, 036217 (2005).

² G. Ódor and B. Hartmann. Phys. Rev. E, **98** 022305 (2018).

Introduction	Methods and results	Summary
	00000	
Methods and benchmarks		
Benchmarks		

- CPU: Intel Xeon X5650 @ 2.67GHz (debrecen)
- GPU:
 - GeForce RTX 3070 Ti (local cluster)
 - Quadro K6000 (debrecen2)

Cascade failures

The effect of one line cut

EU network K = 80

1 Stronger damping effect only slows down R, but leads to a smaller Ω .

Por certain T, R may even increase: islanding effects?

Cascade failures

The effect of one line cut

After thermalization, randomly remove a link w.r.t. the overload condition:

$$\sin(\theta_j - \theta_i)| > T \Rightarrow A_{ij} := 0$$

EU network K = 80

(1) Stronger damping effect only slows down R, but leads to a smaller Ω .

Every service of the service of the

Introduction 0000 Cascade failures Methods and results

Summa O

Relative change in R

- Phase order may increase after an attack for not very strongly coupled systems; resemblance to the islanding effect ^{1,2}.
- There may exist a critical line along (K_c, T_c) as indicated by $\sigma(R)$.

¹ R. Baldick *et al.*, 2008 IEEE Power and Energy Society General Meeting.

¹ A. Esmaeilian et al., IEEE Trans. Ind. Appl. 53, 622 (2016).

Introduction 0000 Cascade failures Methods and results

Summar<u>y</u> O

Cascade failure statistics

• The distribution of the total line failures N_f follows non-universal power laws in the vicinity of (K_c, T_c)

$$p(N_f) \sim N_f^{-\tau}.$$
 (4)

- GPU support is quite crucial.
- "Dragon King" bumps for unexpected rare events may emerge for certain *T*.

	Methods and results	
	00000	
Cascade failures		
Chimera state		

Conclusion and outlook

- The synchronization and desynchronization of AC power grids could be best modeled by the second-order Kuramoto equations;
- The damping factor slows down the dynamics of the order parameter, but would be desirable for achieving better frequency entrainment;
- One line cut after thermalization triggers cascade failures:
 - For moderate K and T values, islanding effects;
 - In the vicinity of (K_c, T_c), cascade sizes follow non-universal power laws.

Acknowledgements: This research was partially supported by Eötvös Loránd Research Network of Hungary.