
Department of Physics of
Complex Systems

Simulation of quantum computers 
on tensor streaming processors

Peter Rakyta 



Data-flow implementation of a
quantum computer simulator

Computations: operations 
on the elements of a data 

stream

Organize data into streams 
flowing through the chip

Data-flow hardware + data-flow programming model = 
Data-flow engine (DFE)



Qubit based architecture

timelines of the qubits

quantum program (unitary)

controlled not gates

single qubit 
rotations



DFE flavour of quantum gate operations 
in quantum gate decomposition

000
001
010
011
100
101
110
111

Unitary
trans.

on the 2nd.
qubit

unitary V transformed unitary V

The elementary gate operations can be represented by
sparse unitaries, mixing element pairs in the columns of V

Organizing the columns of V 
into a stream of data 

DFE model of 
gate operations 



Rethink the  computational design
two-dimensional mesh of 
cores      

organized into functionally sliced 
architecture: TSP



streams of data across the chip

data
manipulation

(like transpose)
matrix-matrix
multiplication

elementwise transformations
(arithmetic logical units)

matrix-matrix
multiplication

data
manipulation

(like transpose)

32 streams

32 streams

each stream carries 320 vectorized bytes
over 320 lanes

VXM: int8, int16, int32, uint8, uint16, uint32, float16, float32, bool8, bool16, bool32 

supported operands:

MXM: int8 x int8     int32, float16 x float16     float32

110MB 110MB





supported operations

Operations over ALUs can be chined up (pipelined)

VXM slices

supported operands

add, sub, mul, neg, exp2, log2, tanh, cast
equal, not_equal, less, greater, bitwise_or
max, min, left_shift, right_shift, mask, 

ALU 0 ALU 1 ALU 2

the connectivity between the ALUs is limited 
The ALU chain needs to be planned  carefully

UINT8, INT8, BOOL8
UINT16, INT16, BOOL16
BOOL32, UINT32, INT32
FLOAT16, FLOAT32







Resource planing of Groq QC simulator

MEM VXM

unitary unitary 8x 32-bit float multiplications
6x 32-bit float additions
in toal: 14 ALU units (from 16)

4x2 streams

4x2 streams

gate 
kernel

4x2 streams

In total 24 streams (from 32) 4x2 streams
Save the transformed unitary

on the other hemisphere

CPU, FPGA

000
001
010
011
100
101
110
111

Unitary
trans.

on the 3rd.
qubit

unitary V transformed unitary V

320-way SIMD

320-way SIMD

unitary transformation:
multiplication of complex numbers

4x multiplications and
2x additions



MEM VXM

read row pairs of the input unitary

Sequence of quantum gate operations

and gates

unitary
transform

save two copies of the transformed unitary

1

2

MEM

read row pairs of the input unitary

and gates

unitary
transform

3

save two copies of the transformed unitary

read row pairs of the input unitary

and gates

alternating application of the quantum gates on the input unitary
gates are distributet between the hemispheres during the initial IO 

Performance benchmark:

qubits



Issue of long compilation

gates with different target/control qubits involves different row pairs

need different gate program 
for each target/control qubit? 

to invoke single  program takes
to much time ~ms

need to chain up gate programs to
amortize the init IO

each circuit needs to be
compiled individually

the compilation takes to much time: ~mins

not practical in most of the use  casaes



Implementation for universal gate operations

to resolve the long-compilation issue we designed a general gate implementation 

chain up multiple general gate operations to amortize the IO overhead

How to design a general gate implementation?

memory gather/scatter via memory maps

upload precalculated memory maps 
to determine which data need to be
gathered from the memory to produce the
correct row-pair streams



Implementation for universal gate operations

gather maps

ga
te

s

fetch row pairs
from the unitary 
according to the
gather maps

two copies of the unitary are needed
because of MEM read concurrency

unitary 
transformation

gate
kernels

MEM slices

Indirect memory addressing through maps  is a powerful tool on the Groq chip



State-vector QC simulation on the Groq chip

unitary simulator       VS        state-vector sumulator
ro

w
s

320-way SIMD over the 
elements in the columns

320-way SIMD over the 
elements in the columns

rows to be
combined

element to be
combined

ro
w

s
The elements of the state vector need to be permuted within 
a vector



State-vector QC simulation on the Groq chip

permutation/shifter slices
to modify the elements within a 320-vector 

permuted 
state-vector

state-vector

unitary 
transformation

gate
kernels



Conclusions and outlooks

The Groq unitary simulator integrated into SQUANDER:

https://github.com/rakytap/sequential-quantum-gate-decomposer

Sequantial Quantum Gate Decomposer

Quantum gate 
compilation

State preparation

Quantum ML

gradient descend and
evolutionary optimizers



Aknowledgement

This research was supported by the Ministry of Innovation and Technology and the 
National Research, Development and Innovation Office within the Quantum Information
National Laboratory of Hungary and Grants No. 2020-2.1.1-ED-2021-00179, 
by the ÚNKP-22-5 New National Excellence Program of the Ministry for Culture and 
Innovation from the source of the National Research, Development and Innovation Fund, 
by the Hungarian Scientific Research Fund (OTKA) Grant No. K134437 
and by the Hungarian Academy of Sciences through the Bolyai János Stipendium 
(BO/00571/22/11).

contact: Peter Rakyta, peter.rakyta@ttk.elte.hu

We acknowledge the computational resources provided by the Wigner Scientific 
Computational Laboratory (WSCLAB)  (the formerWigner GPU Laboratory)


