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CERN
/9wb ƛǎ ǘƘŜ ǿƻǊƭŘΩǎ ōƛƎƎŜǎǘ 
laboratory for particle physics.

Our goal is to understand the 
fundamental particles and laws 
of the universe.
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https://quantum.cern

How can future quantum technologies contribute 
ǘƻ /9wbΩǎ ǎŎƛŜƴǘƛŦƛŎ ƳƛǎǎƛƻƴΚ

Iƻǿ Ŏŀƴ /9wbΩǎ ǘŜŎƘƴƻƭƻƎƛŜǎ ŀƴŘ ŜȄǇŜǊǘƛǎŜ 
contribute to the quantum revolution?

CERN Quantum Technology Initiative

QTI Roadmap: 
https:// doi.org/10.5281/zenodo.5553774

Launched  January 2020
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Our areas of research
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The QTI Hub: A collaborationframework for QTI

Enable access to diverse quantum technology and services

Provide a unified framework for all collaborative projects QTI is setting 
up with multiple partners.

Establish a clear separation between commercial relationships and 
R&D collaborations

Facilitate follow-up and ensure more efficient coordination of projects 
also across departments.

Allow for multiples approaches to IP protection according to CERN policies.

The QTI Hub 
createsa 

community of 
partners 

investigatingthe 
differt areasof 

quantum 
technologies. 
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QTI Objectives

Integrate quantum computers within HEP 
computing model

Make CERN a nodeof the future European
network infrastructure

Play a major role in the development of next 
generation detectors for fundamental physics 

Join the broader quantum ecosystem to multiply 
impact

Design Quantum Network demonstrators incorporating 
White Rabbit for time synchronization;

Characterize performance of communication protocols 
in realistic use cases

Develop superconductingRF cavities for sensing and 
computing applications;

Significant contribution to ECFA DRD5 program 

Develop hybrid algorithms for realistic applications;

Contribute to infrastructure development

Setup co-development partnerships with companies, 
institutes and other entities.

22.05.2025 7



Sustainintegration of quantum computing within HEP computing model

o Develop quantum algorithms and Quantum Machine Learning

o Understand the performance  of near-term quantum infrastructure in 
hybrid setups (HPC + QC, ..)

o Study scaling toward fault tolerant

Most of these developments are common to areas beyond HEP

HybridQuantum Computing

https://home.cern/science/computing . Image credit: CERN 822.05.2025

https://home.cern/science/computing


Main Quantum Computing Paradigms

Gate-based quantum computers Quantum annealersAnalog quantum simulators

Solve task with an algorithm 
containing a series of quantum 
gates, implementing any unitary 

transformation

Embed task in a Binary Quadratic 
Model & solve Ising or QUBO 
problems, using static qubit 

connectivity andlocal control

Embed task in a graph & solve Ising 
or QUBO formulation, using 

dynamic qubit positioning but no or 
poor local qubit control

9

https://algassert.com/quirk
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Motivation



HL-LHC: The curseof  dimensionality

200 simultaneous
collisions!



HL-LHC: The curseof  dimensionality

200 simultaneous
collisions!



Theory and simulationschallenges

Å Weare interestedin out-of equilibrium and real-
time dynamicproblems

(scattering, thermalisationor dynamics after quenches) 

Å Complexequationof statesand phasediagrams
(QCD) 

Å Standard Monte Carlo solutionsare two
expensiveor fail entirely

13

Why do we think that Quantum Computers couldbe a solution to data simulation
and data analysisin HEP ?

High Energy Physicsstudies quantum correlationsat high energy 
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A short detourΧ
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https:// youtu.be /mtgYG2zsbbQ
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The Bell inequalities
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John Bell in 1982 at CERN (Image: CERN) 

Å Create ΨΩŀǊǘƛŦƛŎƛŀƭέ ǉǳŀƴǘǳƳ ǎǘŀǘŜǎ for a 
range of applications (single photons, 
trapped ions, superconductors, etc.) 

Quantum Technologies

Å 1964: Bell inequalitiesprove that no 
theory basedon localhiddenvariables
(realism) can reproduceQM results

Å Major step confirmingthe possibilityof 
usingdistantentangledphotonsasa 
quantum information resource
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The highest energy 

observation of 

quantum 

entanglement 
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QML concept and 

examples



Quantum Computing .. A computer science perspective
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Principles of quantum mechanics enhance computations

Superposition leads to parallelism Ą exponential speedup?

Entanglement Ą non linear correlation and classical intractability?

Operations (gates) are unitary transformations Ą reversible computing?

Output is the result of a measurement according to Born rule Ą stochastic 

computation ?

No-cloning theorem Ą information security

Quantum state coherence and isolation Ą computation stability and errors

Qubit state collapses  Ą reproducibility?
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ÅSpeed-up and complexity

ÅSample efficiency

ÅRepresentationalpower

ÅEnergy efficiency???

ÅEvaluateperformance on realisticuse cases

ÅQPU asacceleratorswithin classical
infrastructure?

va[Υ vǳŀƴǘǳƳ ŎƻƳǇǳǘƛƴƎ ǘƻ άƛƳǇǊƻǾŜέ a[

Study classical intractability: 
Focus on quantum circuits that are not efficiently simulableclassically? Cerezo, Marco, et al. "Variational quantum 

algorithms."Nature Reviews Physics3.9 (2021)
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Quantum Machine 
Learning Lifecycle Data 

Preparation

Model 
Definition

Model 
Training

Model 
Testing

Model 
Interpretation

The quantum advantage
of manyknownQML 

algorithmsis impededby 
an input or output 

bottleneck
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Models

Gradient-free or gradient-basedoptimization

Data Embeddingcan be learned

Ansatz design can leverage data symmetries1

Variational algorithms (ex. QNN)

Kernel methods (ex. QSVM)

Feature maps as quantum kernels

Classical kernel-based training(convex losses)

Identify classes of kernels that relate to specificdata
structures2

Image credit M. Schuld

2 Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure ." arXiv:2105.03406 (2021).

Image credit 
SwissQuantumHub

1 Bogatskiy, Alexander, et al. "Lorentz group equivariant neural network for particle physics ." PMLR, 2020.

3Jerbi, Sofiene, et al. "Quantum machine learning beyond kernel methods ." arXiv:2110.13162 (2021).

Energy-based ML (ex. QBM)

Build networks of stochasticbinary units and 
optimisetheir energy. 
QBM has quadraticenergyfunction that follows
the Boltzmandistribution(IsingHamiltonian)

22.05.2025 22



Parameter optimization
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https://pennylane.ai/qml/demos/

tutorial_spsa

SimultaneousPerturbation StochasticApproximation (SPSA)
(gradient-free)

If gradient computation not possible, too resource-intensive, 
or noise-robustness required (slower convergence but fewer function evaluations) 

Gradient is approximated by two sampling steps and parameters are perturbed in all directions simultaneously 

Iterative update rule comparable to 
classical stochastic gradient descent 

22.05.2025

See C. Riegerôssummer students lecture



Gradient-based optimization ǎǳŦŦŜǊǎ ŦǊƻƳ έōŀǊǊŜƴ ǇƭŀǘŜŀǳǎέ

Quantum NN are strongly affected

Need compromiseōŜǘǿŜŜƴ άǇƻǿŜǊέ ŀƴŘ ŎƻƴǾŜǊƎŜƴŎŜ

Model convergence in the quantum space

24

J. McClean et al., arXiv:1803.11173
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Challenges for QML 
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Å Efficient data handlingand data embedding

Å Find balance: Generalization andrepresentational power vs. Convergence and intractability

Å Problem of barren plateaus and vanishing gradients in optimization landscape 

Å How well can we survey the Hilbert space (expressibility)?

Å Current hardware limitations 

Å Limited number of qubits and connectivity Ą data dimensionality reduction

Å Quantum Noise Effects (decoherence, measurement errors or gate-level errors)

Å Efficient interplay between classical and quantum computer

Å ΧΦ

22.05.2025



26

Signalvs background discrimination

ÅDefinea numberof featuresthat distinguishsignal wrt

background

ÅStudyand characterisethosefeatures

ÅBuildcriteriafor improvingseparation

Typicaldata analysissetup Sucha  problem can require
hundredsof feautre.

Resultsare givenin 
terms of ROC curves

22.05.2025



22.05.2025 27

Can QML leverage 
the «exponential
advantage?»



ÅCreate classically intractable features 
in the Hilbert space

ÅEstimateFidelity kernel

ÅUse classical training(convex losses)
x z

Quantum embedding and kernel methods

Hilbert spaceis exponentiallylarger

Sparserdata

Lossof predictivepower

F. Di Marcantonio et al. , CHEP2023



Project quantum kernelsto lower

dimensionality(i.e. localdensitymatrix)1:

Å Improvedgeneralizionwhile keeping 

features into states classicallyhard

Å Example: ttH(bb) binaryclassification22

Projected Quantum Kernel

1Huang, Hsin-Yuan, et al. "Power of data in quantum machine learning." Nature communications 12.1 (2021): 2631.
2 V Beliset al, (2021),Higgs Analysis with Quantum Classifiers, EPJ Web Conf



22.05.2025 30

How do we addressthe 

limitations of current

quantum hardware ?



GuidedQuantum Compression
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V. Belis et al., arxiv: 2402.0952 

< 30 features

Two independent
steps:
Classical
preprocessingand 
quantum 
classification

Quantum Guideddata 
compresstion

22.05.2025



Result

22.05.2025 32

Guidedquantum 
Compression
greatly improves
the performance

Wecan build 
efficienthybrid
systems for HEP
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Does entanglement 

allow QML to learnmore 

complexdistributions?



UnchartedHigh Energy 
Frontier

34

Hunt-Lenox Globe, early XVI, NY Public Library

No hintsof physicsbeyondthe Standard 
Model

Most searchesfocus on specific
theoreticalmodelsΧ

22.05.2025



UnchartedHigh Energy 
Frontier
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Need to cast the net wider!
Χ aƻŘŜƭ !ƎƴƻǎǘƛŎ !ƴƻƳŀƭȅ 5ŜǘŜŎǘƛƻƴ Χ ōŀǎŜŘ ƻƴ 5ŜŜǇ [ŜŀǊƴƛƴƎ

Hunt-Lenox Globe, early XVI, NY Public Library

No hintsof physicsbeyondthe Standard 
Model

Most searchesfocus on specific
theoreticalmodelsΧ

22.05.2025



AnomalyDetectionon Quantum Computers

Data 
compression

Quantum 
algorithm

«Normal» 
training data

Output

Belis V., GM, et al ïCOMMSPHYS-23-1149C
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Model Agnosticapproach:
Å Train usingbaseline data
Å New physicswill be 

flaggedasan anomaly

Hybrid
implementation: 
Use classicaldata 
compression

Classical

Quantum

22.05.2025

https://arxiv.org/abs/2402.09524v1
https://arxiv.org/abs/2402.09524v1
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Performance driven by intrinsicallyquantum properties!

No entanglement

More expressive

24 qubitsSVM  reaches14x classicalmodel performance

Belis V., GM, et al ïCOMMSPHYS-

23-1149C

Quantum/Classical
ratio

Thisisa simulation.
Trend confirmedon IBM 
QToronto

Isthis evidencefor 
quantum advantage?

22.05.2025

https://arxiv.org/abs/2402.09524v1
https://arxiv.org/abs/2402.09524v1
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Can QML address
problemsof limited 
data/resources?
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ReinforcementLearning for 
particle accelerators

Kaiser, J., Xu, C., Eichler, A.et al.Reinforcement learning-trained optimisersand Bayesian optimisation for online 

particle accelerator tuning.Sci Rep14, 15733 (2024). https://doi.org/10.1038/s41598-024-66263-y



Quantum reinforcement learning

Quantum RL  massively
outperformsclassical algorithm in 
terms of model size and stepsto 
convergence

Michael Schenk et al., Hybrid actor -critic algorithm for quantum reinforcement learning at 

CERN beam lines , e-Print: 2209.11044, under review «Quantum Science and Technology»

40

Quantum 
Implementation

ClassicalRL

50x fewer 
training steps

300x smaller
network

22.05.2025
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Leveragingsymmetries
to improve
convergence



Equivariant Quantum CNN 

22.05.2025

Á Construct equivariantquantum CNN under 
rotational & reflectional symmetry  (p4m)

Á Improved generalization power

42

Extended MNIST Image classification: 
(digits 4,5) 



Losslandscape plotted with orqviz

Non-convexity of loss landscape

22.05.2025 43

Non-equivariant QCNN ApprEquivQCNN
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What about running 

in realistic

conditions ?



Noise effectson EQNN wrt discrete 
symmetrygroups e.g. 

╩: R(̀ ύẗ(xiύ Ґ ҍȄi

Bit Flip, Depolarizing(Pauli) and 
Amplitude Damping channels

Noise induced symmetry breaking

45

Adaptive threshold classificationEQNN performance drops with AD

EQNN-Z native:  Z0Z1 commutes with the AD channel generator, but native gate set is limited on hardware!

DP should not affect symmetry

Tüysüz, Cenk, et al. "Symmetry breaking in geometric quantum machine 

learning in the presence of noise." arXiv preprint arXiv:2401.10293 (2024).
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IntroducingAdaptiveThresholds

06.03.24 46

Adaptive threshold classification

Apartfrom NoiseinducedBarrenPlateau and exponentialconcentrationsthe AD channelexhibitsthe 
largesteffect on the accuracyperformance.

The AD channelshifts the meanof the Zobservable: this resultsin the model havinga biastowards one 
label

Use adaptive threshold : computed as the median over the predictions of 

the training set at every iteration. 




