
GPU-accelerated FVM for the
Navier-Stokes Equations

M. Constans, Z. Horváth
Széchenyi István University (SZE)

Thursday May 22 2025

RedSIM - Exhaust Pipe Acoustics (70M Cells)

2

https://www.youtube.com/watch?v=rAKsChm9-b8

RedSIM - Muffler Velocity Field (4M Cells)

3

https://www.youtube.com/watch?v=K6qLj3sJEbY

Stockholm - Urban Wind Simulation

4

https://www.youtube.com/watch?v=4Pa38q8lD_E

• RedSIM is an unstructured, polyhedral Finite Volume Method (FVM) CFD solver, for the Compressible Navier-
Stokes Equations. It uses the Vijayasundaram method. We use the Explicit-Euler method for simulating unsteady
flows.

• Written in C/C++, CUDA, MPI, targeting CUDA HPC architectures, with multiple GPU nodes.

• Designed for GPU architectures from day 1, leveraging the strength of CUDA GPU-s.

• Heavily Data Oriented Design. We use a custom memory allocation system both on the CPU and GPU side based on
Virtual Memory Paging and build our own custom data structures, like dynamic arrays and hash tables on top of it.

• Rationale for our own containers: Current standard library implementations (ie. STL) can suffer heavily from memory
fragmentation when multiple containers are declared (placement new can help); having a continuous address space,
with allocations back-to-back, allows us to upload multiple containers in a single cuMemcpy, by just uploading our
entire Arena (Bump Allocator)

• In the same line of thought: no exceptions, no RAII; Allocations on the GPU are expensive, copies even more
expensive. We want to be explicit about when copies happen. In a lot of ways, it’s very similar to optimizing resource
loads/transfers in video-games (models, textures, …)

RedSIM - Architecture Overview

5

RedSIM - Architecture Overview

6

Flux Computation Kernels.
Primitive Computations.
(ie. Compute the flux on a

tetrahedra)

Solvers.
Dispatches kernel batch calls,
with an optimal GRID/THREAD

size

Iterators.
Call different solvers,
in order to solve some

equations with some integration
method (ie. Explicit Euler).

RedSIM - Architecture Overview

7

Flux Computation Kernels.
Primitive Computations.
(ie. Compute the flux on a

tetrahedra)

Solvers.
Dispatches kernel batch calls,
with an optimal GRID/THREAD

size

Iterators.
Call different solvers,
in order to solve some

equations with some integration
method (ie. Explicit Euler).

Most of our optimization efforts went into the kernels,
since they are the main computational bottleneck.

All kernel code is platform/hardware specific (x86, ARM, CUDA).
On the CPU-side, all code is manually written in SIMD (AVX512, if available).
For CUDA, we manually optimize our kernels by viewing PTX disassembly,
and using NSight compute on windows.

- Memory Access Pattern Optimization is arguably the most important thing in HPC.

- More often than not applications are not compute-bound, but memory throughput-bound.

- GPU-s have relatively low VRAM, compared to CPU architectures, that often times have terabyte of RAM

to work with in HPC.

- In CFD especially, when computing very large Reynolds number simulations with over 100M cells, proper
compression of data determine whether we can fit everything in VRAM.e

- Proper data locality is also incredivb

Optimizing RedSIM for CUDA Architectures.

8

Memory Optimization Concerns

Keeping Allocations Linear & Data Locality.

Avoid memory fragmentation (thousands of disjoint malloc calls). The more fragmentation, the more cache misses.

Make sure that data access is always local to some extent.

Efficient Data Compression.

Compressing things into lower-precision variants is really common in GPU programming. This is

especially challenging in scientific computing, since heavy lossy compression doesn’t play well with

Simulation stability.

Communication Latency

CPU <-> GPU transfers are very expensive, stall the pipeline, and should be minimized. Moreover, inter-node

communication between two GPU-s on different nodes is even MORE expensive, and work dispatch has to be very

carefully considered.

Memory Access Pattern Optimization

9

• On the CPU-side: We manage memory ourselves, using virtual memory reserves / commits. (VirtualAlloc on win32,
mmap on linux), with a combination of our own custom allocation structures: Arenas (also known as Bump
Allocators), Pools, Free Lists. This allows us to have complete control over memory fragmentation, and pass large
chunks of data around between the CPU/GPU with CUDA, CPU/CPU with MPI.

• On the GPU-side: We do the exact same thing - thanks to cuMemAddressReserve, cuMemCreate, cuMemMap,
we can manage virtual memory in a similar but slightly different way.

Keeping Allocations Linear

10

Memory Access Locality - Inside a single Node.

11

- Inside a single partition, we use space filling curves in order to guarantee some form of data locality, and
avoid cache misses.

- Morton Curves are really great because they only take a couple of cycles to compute (bit interleaving), yet
produce optimal results (better than Hilbert curves for our application).

- Fun Fact: For graphics API-s, texture lookups usually using Morton curves for minimizing cache misses,
alongside chunks (consider how many cache misses there would be if data was stored in rows).

3D generalization

- In order to communicate between multiple GPU nodes (1 CPU is attached to 8 GPU-s, typically A100-s),
we have to decompose our domain into multiple partitions. Correct decomposition is key for optimal performance. A good decomposition
must have a minimal contact surface, and minimize the amount of data exchange needed between GPU-s. It should also cluster GPU-s on
the same node in an adjacent way, in order to avoid unnecessary communication between different nodes.

Memory Access Locality - Multi-Node communication

12

CPU NODE 1

GPU 1 GPU 2

GPU 3 GPU 4

CPU NODE 2

GPU 5 GPU 6

GPU 7 GPU 8

Typical HPC Architecture

13

CPU NODE 1

GPU 1 GPU 2

GPU 3 GPU 4

CPU NODE 2

GPU 5 GPU 6

GPU 7 GPU 8

Typical HPC Architecture

14

CPU NODE 1

GPU 1 GPU 2

GPU 3 GPU 4

CPU NODE 2

GPU 5 GPU 6

GPU 7 GPU 8

MPI_Send / MPI_Recv
SLOW!

Typical HPC Architecture

15

CPU NODE 1

GPU 1 GPU 2

GPU 3 GPU 4

CPU NODE 2

GPU 5 GPU 6

GPU 7 GPU 8

MPI_Send / MPI_Recv
SLOW!

SLI INTRA-GPU COMMUNICATION (NVLINK)
FAST!

• We partition with ZOLTAN:

• STEP1: Zoltan_LB_Partition With ParMETIS, for NODES.

• STEP2: Zoltan_LB_Partition with Morton Space Fill Curves, for

• EACH THREAD on the CPU, EACH BLOCK/THREAD FOR CUDA.

• MPI_GRAPH partitioning communicator for describing topology.

• NVLINK for GPU/GPU communication via SLI. (We use the CUDA API).

• MPI for CPU/CPU communication.

Partitioning Strategy - CUDA + MPI

16

Partitioning Strategy

GPU
1

GPU
2

GPU
3

GPU
4

GPU
5

GPU
 6

GPU
7

GPU
8

GPU
9

GPU
10

GPU
11

GPU
12

GPU
13

GPU
14

GPU
15

GPU
16

• We partition with ZOLTAN, keeping these facts in mind.

• MPI_GRAPH partitioning communicator for describing topology.

• NVLINK for GPU/GPU communication via SLI. (We use the CUDA API).

• MPI for CPU/CPU communication.

Partitioning Strategy - CUDA + MPI

17

Partitioning Strategy

GPU
1

GPU
2

GPU
3

GPU
4

GPU
5

GPU
 6

GPU
7

GPU
8

GPU
9

GPU
10

GPU
11

GPU
12

GPU
13

GPU
14

GPU
15

GPU
16

SLOW,
Keep partitions spatially
further apart

• We partition with ZOLTAN, keeping these facts in mind.

• MPI_GRAPH partitioning communicator for describing topology.

• NVLINK for GPU/GPU communication via SLI. (We use the CUDA API).

• MPI for CPU/CPU communication.

Partitioning Strategy - CUDA + MPI

18

Partitioning Strategy

GPU
1

GPU
2

GPU
3

GPU
4

GPU
5

GPU
 6

GPU
7

GPU
8

GPU
9

GPU
10

GPU
11

GPU
12

GPU
13

GPU
14

GPU
15

GPU
16

FAST,
Keep partitions spatially
close to each other.

• Since we’re using a Global Time Stepping Scheme, we need to find a minimum

tilmestep to use. To painful part is that in order to determine the global minimum,

each GPU, GPU NODE has to find a global minimum.

• In order to parallelize this, we use BLOCK BASED minimum-reduction in CUDA.

• Once we find the minimum on each GPU on a given node, we use MPI_Reduce to find the global minimum.

Minimum Reduction - Global Time Stepping

19

- Current Scaling Numbers on KAROLINA HPC, Nvidia A100s.’

- For N=2M, and N=10M, we relatively bad scaling numbers for 8, 16, 32GPU-s. The reason is, 2M cells
starts being a problem too small for 16-32 GPUs, so we start stalling with communication time.

- As can be seen, with N=30M, our scaling numbers are much better, since each GPU is busy all the time
with compute, and the GRID/THREAD distribution is much better.

RedSIM - Scaling

20

Q&A

21

