
A line search strategy for training CV variational quantum
circuits

GPU Day 2025

Zoltán Kolarovszki

HUN-REN Wigner Research Centre for Physics

Eötvös Loránd University

May 22, 2025

1 / 28

Parameter shift rules

Continuous-variable quantum computing

Parameter shift rules for CV quantum circuits?

Line search strategy

2 / 28

Parameter shift rules

3 / 28

Variational quantum circuits
Variational quantum circuits (VQCs) constist of:

1. An initial state |ψ(x)⟩ depending on some data x .

2. A quantum circuit Û(θ) depending on free parameters θ.

3. A set of observables {Ôj}Nj=1 to be measured.

Expectation values:

fj(θ) := ⟨ψ(x)| Û†(θ)Ôj Û(θ) |ψ(x)⟩ . (1)

Loss function L:

L(θ) = L(f1(θ), · · · , fN(θ)) (2)

Goal: minimize L by tuning θ.

4 / 28

Variational quantum circuits
Variational quantum circuits (VQCs) constist of:

1. An initial state |ψ(x)⟩ depending on some data x .
2. A quantum circuit Û(θ) depending on free parameters θ.

3. A set of observables {Ôj}Nj=1 to be measured.

Expectation values:

fj(θ) := ⟨ψ(x)| Û†(θ)Ôj Û(θ) |ψ(x)⟩ . (1)

Loss function L:

L(θ) = L(f1(θ), · · · , fN(θ)) (2)

Goal: minimize L by tuning θ.

4 / 28

Variational quantum circuits
Variational quantum circuits (VQCs) constist of:

1. An initial state |ψ(x)⟩ depending on some data x .
2. A quantum circuit Û(θ) depending on free parameters θ.

3. A set of observables {Ôj}Nj=1 to be measured.

Expectation values:

fj(θ) := ⟨ψ(x)| Û†(θ)Ôj Û(θ) |ψ(x)⟩ . (1)

Loss function L:

L(θ) = L(f1(θ), · · · , fN(θ)) (2)

Goal: minimize L by tuning θ.

4 / 28

Variational quantum circuits
Variational quantum circuits (VQCs) constist of:

1. An initial state |ψ(x)⟩ depending on some data x .
2. A quantum circuit Û(θ) depending on free parameters θ.

3. A set of observables {Ôj}Nj=1 to be measured.

Expectation values:

fj(θ) := ⟨ψ(x)| Û†(θ)Ôj Û(θ) |ψ(x)⟩ . (1)

Loss function L:

L(θ) = L(f1(θ), · · · , fN(θ)) (2)

Goal: minimize L by tuning θ.

4 / 28

Variational quantum circuits
Variational quantum circuits (VQCs) constist of:

1. An initial state |ψ(x)⟩ depending on some data x .
2. A quantum circuit Û(θ) depending on free parameters θ.

3. A set of observables {Ôj}Nj=1 to be measured.

Expectation values:

fj(θ) := ⟨ψ(x)| Û†(θ)Ôj Û(θ) |ψ(x)⟩ . (1)

Loss function L:

L(θ) = L(f1(θ), · · · , fN(θ)) (2)

Goal: minimize L by tuning θ.

4 / 28

Variational quantum circuits
Variational quantum circuits (VQCs) constist of:

1. An initial state |ψ(x)⟩ depending on some data x .
2. A quantum circuit Û(θ) depending on free parameters θ.

3. A set of observables {Ôj}Nj=1 to be measured.

Expectation values:

fj(θ) := ⟨ψ(x)| Û†(θ)Ôj Û(θ) |ψ(x)⟩ . (1)

Loss function L:

L(θ) = L(f1(θ), · · · , fN(θ)) (2)

Goal: minimize L by tuning θ.

4 / 28

Question: How to determine ∇L(θ) efficiently?

5 / 28

Question: How to determine ∇L(θ) efficiently?

5 / 28

How to determine gradients on a contentional computer?

Options:

1. Symbolic differentiation: using symboling computer algebra package

2. Automatic differentiation: Builds computational graph, accumulates
intermediate derivative, uses the chain rule. (Very efficient)

3. Numerical differentiation:

d

dx
f (x) ≈ f (x +∆x/2)− f (x −∆x/2)

∆x
. (3)

Are these applicable to quantum circuits?

6 / 28

How to determine gradients on a contentional computer?

Options:

1. Symbolic differentiation: using symboling computer algebra package

2. Automatic differentiation: Builds computational graph, accumulates
intermediate derivative, uses the chain rule. (Very efficient)

3. Numerical differentiation:

d

dx
f (x) ≈ f (x +∆x/2)− f (x −∆x/2)

∆x
. (3)

Are these applicable to quantum circuits?

6 / 28

How to determine gradients on a contentional computer?

Options:

1. Symbolic differentiation: using symboling computer algebra package

2. Automatic differentiation: Builds computational graph, accumulates
intermediate derivative, uses the chain rule. (Very efficient)

3. Numerical differentiation:

d

dx
f (x) ≈ f (x +∆x/2)− f (x −∆x/2)

∆x
. (3)

Are these applicable to quantum circuits?

6 / 28

How to determine gradients on a contentional computer?

Options:

1. Symbolic differentiation: using symboling computer algebra package

2. Automatic differentiation: Builds computational graph, accumulates
intermediate derivative, uses the chain rule. (Very efficient)

3. Numerical differentiation:

d

dx
f (x) ≈ f (x +∆x/2)− f (x −∆x/2)

∆x
. (3)

Are these applicable to quantum circuits?

6 / 28

How to determine gradients on a contentional computer?

Options:

1. Symbolic differentiation: using symboling computer algebra package

2. Automatic differentiation: Builds computational graph, accumulates
intermediate derivative, uses the chain rule. (Very efficient)

3. Numerical differentiation:

d

dx
f (x) ≈ f (x +∆x/2)− f (x −∆x/2)

∆x
. (3)

Are these applicable to quantum circuits?

6 / 28

How to determine gradient on a quantum computer?

Options:

1. Symbolic differentiation: symbols cannot be handled ✗

2. Automatic differentiation: intermediate derivatives cannot be stored ✗

3. Numerical differentiation: parameters can be shifted with a small amount ✓

∂iL(θ) ≈
L(θ + (∆x/2)ei)− L(θ − (∆x/2)ei)

∆x
. (4)

Problems:

1. Near-term quantum devices are noisy.

2. The output is stochastic =⇒ we can only estimate the expectation values from
samples.

7 / 28

How to determine gradient on a quantum computer?

Options:

1. Symbolic differentiation: symbols cannot be handled ✗

2. Automatic differentiation: intermediate derivatives cannot be stored ✗

3. Numerical differentiation: parameters can be shifted with a small amount ✓

∂iL(θ) ≈
L(θ + (∆x/2)ei)− L(θ − (∆x/2)ei)

∆x
. (4)

Problems:

1. Near-term quantum devices are noisy.

2. The output is stochastic =⇒ we can only estimate the expectation values from
samples.

7 / 28

How to determine gradient on a quantum computer?

Options:

1. Symbolic differentiation: symbols cannot be handled ✗

2. Automatic differentiation: intermediate derivatives cannot be stored ✗

3. Numerical differentiation: parameters can be shifted with a small amount ✓

∂iL(θ) ≈
L(θ + (∆x/2)ei)− L(θ − (∆x/2)ei)

∆x
. (4)

Problems:

1. Near-term quantum devices are noisy.

2. The output is stochastic =⇒ we can only estimate the expectation values from
samples.

7 / 28

How to determine gradient on a quantum computer?

Options:

1. Symbolic differentiation: symbols cannot be handled ✗

2. Automatic differentiation: intermediate derivatives cannot be stored ✗

3. Numerical differentiation: parameters can be shifted with a small amount ✓

∂iL(θ) ≈
L(θ + (∆x/2)ei)− L(θ − (∆x/2)ei)

∆x
. (4)

Problems:

1. Near-term quantum devices are noisy.

2. The output is stochastic =⇒ we can only estimate the expectation values from
samples.

7 / 28

How to determine gradient on a quantum computer?

Options:

1. Symbolic differentiation: symbols cannot be handled ✗

2. Automatic differentiation: intermediate derivatives cannot be stored ✗

3. Numerical differentiation: parameters can be shifted with a small amount ✓

∂iL(θ) ≈
L(θ + (∆x/2)ei)− L(θ − (∆x/2)ei)

∆x
. (4)

Problems:

1. Near-term quantum devices are noisy.

2. The output is stochastic =⇒ we can only estimate the expectation values from
samples.

7 / 28

High errors of near-term quantum devices can make using finite difference formulas
inefficient.

8 / 28

High errors of near-term quantum devices can make using finite difference formulas
inefficient.

8 / 28

Parameter shift rules
Parameter shift rules help us to estimate gradients better.

∂i f (θ) = c [f (θ + s ei)− f (θ − s ei)] , (5)

where

▶ c is some constant,

▶ s is the parameter shift, can be large.

Point: The shifts are larger, but the formula is still exact, and improves
sample-efficiency.

Rough analogy: For
f (x) = sin(x) (6)

we can write
d

dx
f (x) =

1

2
[sin(x + π/2) + sin(x − π/2)] . (7)

9 / 28

Parameter shift rules
Parameter shift rules help us to estimate gradients better.

∂i f (θ) = c [f (θ + s ei)− f (θ − s ei)] , (5)

where

▶ c is some constant,

▶ s is the parameter shift, can be large.

Point: The shifts are larger, but the formula is still exact, and improves
sample-efficiency.

Rough analogy: For
f (x) = sin(x) (6)

we can write
d

dx
f (x) =

1

2
[sin(x + π/2) + sin(x − π/2)] . (7)

9 / 28

Parameter shift rules
Parameter shift rules help us to estimate gradients better.

∂i f (θ) = c [f (θ + s ei)− f (θ − s ei)] , (5)

where

▶ c is some constant,

▶ s is the parameter shift, can be large.

Point: The shifts are larger, but the formula is still exact, and improves
sample-efficiency.

Rough analogy: For
f (x) = sin(x) (6)

we can write
d

dx
f (x) =

1

2
[sin(x + π/2) + sin(x − π/2)] . (7)

9 / 28

Continuous-variable quantum computing

10 / 28

Qubit-based vs. Continuous-variable quantum computation

Qubit-based Continuous-variable (CV)

Information unit Qubit Qumode

Hilbert space
dimension Finite Infinite

Basis states |0⟩, |1⟩ |0⟩, |1⟩, |2⟩, |3⟩, . . .

Elementary gates
Hadamard, CNOT,

Pauli gates
Squeezing, Rotation,

Displacement

Typical measurements
Computational/Hadamard

basis measurements
Particle number detection

Homodyne/heterodyne detection

11 / 28

CV quantum computing

We model qumodes by quantum har-
monic oscillators, and the states |0⟩,
|1⟩, |2⟩, |3⟩ , . . . correspond to excitations
(particles).

In a sense, qubit-based quantum computation is “digital”, while CV quantum
computation is “analog”.

CV quantum states can also be described by quasidistributions over the phase space.

12 / 28

CV quantum computing

We model qumodes by quantum har-
monic oscillators, and the states |0⟩,
|1⟩, |2⟩, |3⟩ , . . . correspond to excitations
(particles).

In a sense, qubit-based quantum computation is “digital”, while CV quantum
computation is “analog”.

CV quantum states can also be described by quasidistributions over the phase space.

12 / 28

CV quantum computing

We model qumodes by quantum har-
monic oscillators, and the states |0⟩,
|1⟩, |2⟩, |3⟩ , . . . correspond to excitations
(particles).

In a sense, qubit-based quantum computation is “digital”, while CV quantum
computation is “analog”.

CV quantum states can also be described by quasidistributions over the phase space.

12 / 28

13 / 28

Linear gates
Roughly speaking, linear gates only squeeze, rotate and displace these distributions.

▶ Squeezing S(r):

▶ Rotation (or phaseshift) R(θ) (particle number preserving)

▶ Displacement D(r)

14 / 28

Linear gates
Roughly speaking, linear gates only squeeze, rotate and displace these distributions.

▶ Squeezing S(r):

▶ Rotation (or phaseshift) R(θ) (particle number preserving)

▶ Displacement D(r)

14 / 28

Linear gates
Roughly speaking, linear gates only squeeze, rotate and displace these distributions.

▶ Squeezing S(r):

▶ Rotation (or phaseshift) R(θ) (particle number preserving)

▶ Displacement D(r)

14 / 28

Linear gates
Roughly speaking, linear gates only squeeze, rotate and displace these distributions.

▶ Squeezing S(r):

▶ Rotation (or phaseshift) R(θ) (particle number preserving)

▶ Displacement D(r)

14 / 28

Parameter shift rules for CV quantum
circuits?

15 / 28

Applicable parameter shift rules so far
1. Circuits with only linear gates, no nonlinearities allowed [Mitarai’18, Schuld’18]

2. Circuits with only particle number-preserving linear gates (i.e., phaseshift
gates), but particle number-preserving nonlinearities are allowed [Facelli’24].

In this method, trigonometric interpolation is used: f (θ) depends on θ as

f (θ) =
R∑

k=−R

cke
ikθ, (8)

where
▶ R ∝ number of particles,
▶ ck =⇒ determined via trigonometric interpolation.

Calculating the derivative f ′(θ) is straightforward!

Can we use similar interpolation techniques in CV circuits generally?

16 / 28

Applicable parameter shift rules so far
1. Circuits with only linear gates, no nonlinearities allowed [Mitarai’18, Schuld’18]

2. Circuits with only particle number-preserving linear gates (i.e., phaseshift
gates), but particle number-preserving nonlinearities are allowed [Facelli’24].

In this method, trigonometric interpolation is used: f (θ) depends on θ as

f (θ) =
R∑

k=−R

cke
ikθ, (8)

where
▶ R ∝ number of particles,
▶ ck =⇒ determined via trigonometric interpolation.

Calculating the derivative f ′(θ) is straightforward!

Can we use similar interpolation techniques in CV circuits generally?

16 / 28

Applicable parameter shift rules so far
1. Circuits with only linear gates, no nonlinearities allowed [Mitarai’18, Schuld’18]

2. Circuits with only particle number-preserving linear gates (i.e., phaseshift
gates), but particle number-preserving nonlinearities are allowed [Facelli’24].

In this method, trigonometric interpolation is used: f (θ) depends on θ as

f (θ) =
R∑

k=−R

cke
ikθ, (8)

where
▶ R ∝ number of particles,
▶ ck =⇒ determined via trigonometric interpolation.

Calculating the derivative f ′(θ) is straightforward!

Can we use similar interpolation techniques in CV circuits generally?

16 / 28

Applicable parameter shift rules so far
1. Circuits with only linear gates, no nonlinearities allowed [Mitarai’18, Schuld’18]

2. Circuits with only particle number-preserving linear gates (i.e., phaseshift
gates), but particle number-preserving nonlinearities are allowed [Facelli’24].

In this method, trigonometric interpolation is used: f (θ) depends on θ as

f (θ) =
R∑

k=−R

cke
ikθ, (8)

where
▶ R ∝ number of particles,
▶ ck =⇒ determined via trigonometric interpolation.

Calculating the derivative f ′(θ) is straightforward!

Can we use similar interpolation techniques in CV circuits generally?

16 / 28

Applicable parameter shift rules so far
1. Circuits with only linear gates, no nonlinearities allowed [Mitarai’18, Schuld’18]

2. Circuits with only particle number-preserving linear gates (i.e., phaseshift
gates), but particle number-preserving nonlinearities are allowed [Facelli’24].

In this method, trigonometric interpolation is used: f (θ) depends on θ as

f (θ) =
R∑

k=−R

cke
ikθ, (8)

where
▶ R ∝ number of particles,
▶ ck =⇒ determined via trigonometric interpolation.

Calculating the derivative f ′(θ) is straightforward!

Can we use similar interpolation techniques in CV circuits generally?

16 / 28

Interpolating phaseshift gates in CV circuits

Challenge: In the CV setup, the number of particles is usually not fixed.

However: The contributions corresponding to higher particle numbers are “small” in
usual cases:

f (θ) ≈ f̂ (θ) :=
R∑

k=−R

cke
ikθ (9)

Expectation: By increasing the degree of the trigonometric polynomial f̂ , the distance
between f and f̂ decreases sufficiently fast for optimization purposes.

Observation: similar strategy works for the Kerr gate K (κ) (a nonlinear particle
number-preserving gate) by increasing R.

Question: How do expectation values depend on the active linear gates?

17 / 28

Interpolating phaseshift gates in CV circuits

Challenge: In the CV setup, the number of particles is usually not fixed.

However: The contributions corresponding to higher particle numbers are “small” in
usual cases:

f (θ) ≈ f̂ (θ) :=
R∑

k=−R

cke
ikθ (9)

Expectation: By increasing the degree of the trigonometric polynomial f̂ , the distance
between f and f̂ decreases sufficiently fast for optimization purposes.

Observation: similar strategy works for the Kerr gate K (κ) (a nonlinear particle
number-preserving gate) by increasing R.

Question: How do expectation values depend on the active linear gates?

17 / 28

Interpolating phaseshift gates in CV circuits

Challenge: In the CV setup, the number of particles is usually not fixed.

However: The contributions corresponding to higher particle numbers are “small” in
usual cases:

f (θ) ≈ f̂ (θ) :=
R∑

k=−R

cke
ikθ (9)

Expectation: By increasing the degree of the trigonometric polynomial f̂ , the distance
between f and f̂ decreases sufficiently fast for optimization purposes.

Observation: similar strategy works for the Kerr gate K (κ) (a nonlinear particle
number-preserving gate) by increasing R.

Question: How do expectation values depend on the active linear gates?

17 / 28

Interpolating phaseshift gates in CV circuits

Challenge: In the CV setup, the number of particles is usually not fixed.

However: The contributions corresponding to higher particle numbers are “small” in
usual cases:

f (θ) ≈ f̂ (θ) :=
R∑

k=−R

cke
ikθ (9)

Expectation: By increasing the degree of the trigonometric polynomial f̂ , the distance
between f and f̂ decreases sufficiently fast for optimization purposes.

Observation: similar strategy works for the Kerr gate K (κ) (a nonlinear particle
number-preserving gate) by increasing R.

Question: How do expectation values depend on the active linear gates?

17 / 28

Interpolating phaseshift gates in CV circuits

Challenge: In the CV setup, the number of particles is usually not fixed.

However: The contributions corresponding to higher particle numbers are “small” in
usual cases:

f (θ) ≈ f̂ (θ) :=
R∑

k=−R

cke
ikθ (9)

Expectation: By increasing the degree of the trigonometric polynomial f̂ , the distance
between f and f̂ decreases sufficiently fast for optimization purposes.

Observation: similar strategy works for the Kerr gate K (κ) (a nonlinear particle
number-preserving gate) by increasing R.

Question: How do expectation values depend on the active linear gates?

17 / 28

Displacement gate interpolation
Denoting ⟨n|D(r) |m⟩ := D(r)n,m, we can write the following recursion [Miatto’20]:

D(r)0,0 = e−r2/2, D(r)n+1,0 =
r√
n + 1

D(r)n,0 ,

D(r)n,m+1 =
1√

m + 1

(√
nD(r)n−1,m − rD(r)n,m

)
,

(10)

and hence

g(r) := ⟨ψ0|D†(r)ÔD(r) |ψ0⟩ = e−r2/2
∞∑
k=0

ck r
k (ck ∈ C) (11)

for a fixed state |ψ0⟩. Omitting high particle number contributions we get

g(r) ≈ ĝ(r) := p(r) e−r2/2, p polynomial in r . (12)

We can interpolate ĝ(r) by polynomial interpolation of p(r).

18 / 28

Displacement gate interpolation
Denoting ⟨n|D(r) |m⟩ := D(r)n,m, we can write the following recursion [Miatto’20]:

D(r)0,0 = e−r2/2, D(r)n+1,0 =
r√
n + 1

D(r)n,0 ,

D(r)n,m+1 =
1√

m + 1

(√
nD(r)n−1,m − rD(r)n,m

)
,

(10)

and hence

g(r) := ⟨ψ0|D†(r)ÔD(r) |ψ0⟩ = e−r2/2
∞∑
k=0

ck r
k (ck ∈ C) (11)

for a fixed state |ψ0⟩. Omitting high particle number contributions we get

g(r) ≈ ĝ(r) := p(r) e−r2/2, p polynomial in r . (12)

We can interpolate ĝ(r) by polynomial interpolation of p(r).

18 / 28

Displacement gate interpolation
Denoting ⟨n|D(r) |m⟩ := D(r)n,m, we can write the following recursion [Miatto’20]:

D(r)0,0 = e−r2/2, D(r)n+1,0 =
r√
n + 1

D(r)n,0 ,

D(r)n,m+1 =
1√

m + 1

(√
nD(r)n−1,m − rD(r)n,m

)
,

(10)

and hence

g(r) := ⟨ψ0|D†(r)ÔD(r) |ψ0⟩ = e−r2/2
∞∑
k=0

ck r
k (ck ∈ C) (11)

for a fixed state |ψ0⟩. Omitting high particle number contributions we get

g(r) ≈ ĝ(r) := p(r) e−r2/2, p polynomial in r . (12)

We can interpolate ĝ(r) by polynomial interpolation of p(r).

18 / 28

Squeezing gate interpolation

Analogously, we can show that

h(r) := ⟨ψ0|S†(r)ÔS(r) |ψ0⟩ =
∞∑
k=0

ck(tanh r)
k + dk(tanh r)

k sechr (ck , dk ∈ C).

(13)

Similarly, omitting high particle number contributions:

h(r) ≈ ĥ(r) := p(tanh r) + q(tanh r)sechr , (14)

where p and q are polynomials. As before, we can use polynomial interpolation.

19 / 28

Squeezing gate interpolation

Analogously, we can show that

h(r) := ⟨ψ0|S†(r)ÔS(r) |ψ0⟩ =
∞∑
k=0

ck(tanh r)
k + dk(tanh r)

k sechr (ck , dk ∈ C).

(13)
Similarly, omitting high particle number contributions:

h(r) ≈ ĥ(r) := p(tanh r) + q(tanh r)sechr , (14)

where p and q are polynomials. As before, we can use polynomial interpolation.

19 / 28

Determining gradient via interpolation

So far: we can approximate gradients for many gates (Squeezing, Rotation,
Displacement, Kerr) using the interpolating polynomials.

Fact: Linear gates + Kerr gate =⇒ universality =⇒ high expressivity!

However: numerical simulations show, that it might not be worth pursuing this
direction.

Question: Can we use the interpolating polynomials for something better?

20 / 28

Determining gradient via interpolation

So far: we can approximate gradients for many gates (Squeezing, Rotation,
Displacement, Kerr) using the interpolating polynomials.

Fact: Linear gates + Kerr gate =⇒ universality =⇒ high expressivity!

However: numerical simulations show, that it might not be worth pursuing this
direction.

Question: Can we use the interpolating polynomials for something better?

20 / 28

Determining gradient via interpolation

So far: we can approximate gradients for many gates (Squeezing, Rotation,
Displacement, Kerr) using the interpolating polynomials.

Fact: Linear gates + Kerr gate =⇒ universality =⇒ high expressivity!

However: numerical simulations show, that it might not be worth pursuing this
direction.

Question: Can we use the interpolating polynomials for something better?

20 / 28

Determining gradient via interpolation

So far: we can approximate gradients for many gates (Squeezing, Rotation,
Displacement, Kerr) using the interpolating polynomials.

Fact: Linear gates + Kerr gate =⇒ universality =⇒ high expressivity!

However: numerical simulations show, that it might not be worth pursuing this
direction.

Question: Can we use the interpolating polynomials for something better?

20 / 28

Line search strategy

21 / 28

Basic idea

Idea [Nádori’25]: Instead of calculating gradients, use the minima from interpolating
polynomials!

We sample parameters Λ ∈ P({1, · · · , L}), where L is the number of parameters, and
then in each iteration step we modify the parameters θi as

θi 7→
{
θ∗
i i ∈ Λ,

θi i /∈ Λ,
(15)

where θ∗
i is the parameter-wise minimum determined via interpolation.

22 / 28

Basic idea

Idea [Nádori’25]: Instead of calculating gradients, use the minima from interpolating
polynomials!

We sample parameters Λ ∈ P({1, · · · , L}), where L is the number of parameters, and
then in each iteration step we modify the parameters θi as

θi 7→
{
θ∗
i i ∈ Λ,

θi i /∈ Λ,
(15)

where θ∗
i is the parameter-wise minimum determined via interpolation.

22 / 28

23 / 28

Simple example: Circle classifier

Consider a 2D binary classification datasets, with two circles, one contained in another:

D = {(x (i), y (i))}Ntr
i=1, (16)

where

▶ x (i): data features,

▶ y (i) ∈ {0, 1}: associated labels.

24 / 28

Circuit

We use mean-squared error (MSE) as loss function:

L(θ,D) =
1

Ntr

Ntr∑
i=1

(
f (θ, x (i))− 0.1 (2y (i) − 1)

)2
, (17)

where f (θ, x (i)) is an expectation value of x̂ .

25 / 28

Circuit

We use mean-squared error (MSE) as loss function:

L(θ,D) =
1

Ntr

Ntr∑
i=1

(
f (θ, x (i))− 0.1 (2y (i) − 1)

)2
, (17)

where f (θ, x (i)) is an expectation value of x̂ .

25 / 28

10−1

100

Lo
ss

0 5 10 15 20 25 30

Number of iterations

0.0

0.5

1.0

1.5

N
um

be
ro

fs
am

pl
es

×106

Finite difference (lr=0.0025) Finite difference (lr=0.005) Line search

(I used [ZK’25])

26 / 28

10−1

100

Lo
ss

0 5 10 15 20 25 30

Number of iterations

0.0

0.5

1.0

1.5

N
um

be
ro

fs
am

pl
es

×106

Finite difference (lr=0.0025) Finite difference (lr=0.005) Line search

(I used [ZK’25]) 26 / 28

Outlook & Remaining questions

▶ This is very heuristic at this point! =⇒ we need to determine some guarantees
regarding the interpolation error.

▶ How does noise affect the optimization procedure?

▶ Comparison with other optimization methods, e.g., COBYLA or SPSA.

▶ Adapt to maximum-mean discrepancy (MMD) and Kullback-Leibler (KL)
divergence as loss functions.

▶ Can we use the approximated gradients in training QPINNs?

▶ Can this help mitigating barren plateaus?

27 / 28

Outlook & Remaining questions

▶ This is very heuristic at this point! =⇒ we need to determine some guarantees
regarding the interpolation error.

▶ How does noise affect the optimization procedure?

▶ Comparison with other optimization methods, e.g., COBYLA or SPSA.

▶ Adapt to maximum-mean discrepancy (MMD) and Kullback-Leibler (KL)
divergence as loss functions.

▶ Can we use the approximated gradients in training QPINNs?

▶ Can this help mitigating barren plateaus?

27 / 28

Outlook & Remaining questions

▶ This is very heuristic at this point! =⇒ we need to determine some guarantees
regarding the interpolation error.

▶ How does noise affect the optimization procedure?

▶ Comparison with other optimization methods, e.g., COBYLA or SPSA.

▶ Adapt to maximum-mean discrepancy (MMD) and Kullback-Leibler (KL)
divergence as loss functions.

▶ Can we use the approximated gradients in training QPINNs?

▶ Can this help mitigating barren plateaus?

27 / 28

Outlook & Remaining questions

▶ This is very heuristic at this point! =⇒ we need to determine some guarantees
regarding the interpolation error.

▶ How does noise affect the optimization procedure?

▶ Comparison with other optimization methods, e.g., COBYLA or SPSA.

▶ Adapt to maximum-mean discrepancy (MMD) and Kullback-Leibler (KL)
divergence as loss functions.

▶ Can we use the approximated gradients in training QPINNs?

▶ Can this help mitigating barren plateaus?

27 / 28

Outlook & Remaining questions

▶ This is very heuristic at this point! =⇒ we need to determine some guarantees
regarding the interpolation error.

▶ How does noise affect the optimization procedure?

▶ Comparison with other optimization methods, e.g., COBYLA or SPSA.

▶ Adapt to maximum-mean discrepancy (MMD) and Kullback-Leibler (KL)
divergence as loss functions.

▶ Can we use the approximated gradients in training QPINNs?

▶ Can this help mitigating barren plateaus?

27 / 28

Outlook & Remaining questions

▶ This is very heuristic at this point! =⇒ we need to determine some guarantees
regarding the interpolation error.

▶ How does noise affect the optimization procedure?

▶ Comparison with other optimization methods, e.g., COBYLA or SPSA.

▶ Adapt to maximum-mean discrepancy (MMD) and Kullback-Leibler (KL)
divergence as loss functions.

▶ Can we use the approximated gradients in training QPINNs?

▶ Can this help mitigating barren plateaus?

27 / 28

Thank you for your attention!

Email: kolarovszki.zoltan@wigner.hun-ren.hu

28 / 28

mailto:kolarovszki.zoltan@wigner.hun-ren.hu

	Parameter shift rules
	Continuous-variable quantum computing
	Parameter shift rules for CV quantum circuits?
	Line search strategy

