A line search strategy for training CV variational quantum
circuits

GPU Day 2025

Zoltan Kolarovszki

HUN-REN Wigner Research Centre for Physics

E6tvos Lorand University

May 22, 2025

1/28

Parameter shift rules

Continuous-variable quantum computing

Parameter shift rules for CV quantum circuits?

Line search strategy

2/28

Parameter shift rules

3/28

Variational quantum circuits
Variational quantum circuits (VQCs) constist of:
1. An initial state |¢)(x)) depending on some data x.

4/28

Variational quantum circuits
Variational quantum circuits (VQCs) constist of:
1. An initial state |¢)(x)) depending on some data x.
2. A quantum circuit 0(9) depending on free parameters 6.

4/28

Variational quantum circuits
Variational quantum circuits (VQCs) constist of:
1. An initial state |¢)(x)) depending on some data x.
2. A quantum circuit 0(9) depending on free parameters 6.
3. A set of observables {CQ)J}JN:1 to be measured.

4/28

Variational quantum circuits
Variational quantum circuits (VQCs) constist of:
1. An initial state |¢)(x)) depending on some data x.
2. A quantum circuit 0(9) depending on free parameters 6.
3. A set of observables {CQ)J}JN:1 to be measured.

Expectation values:

£(0) = ((x)| U'(0)O;0(8) |(x)) . (1)

4/28

Variational quantum circuits
Variational quantum circuits (VQCs) constist of:
1. An initial state |¢)(x)) depending on some data x.
2. A quantum circuit 0(9) depending on free parameters 6.
3. A set of observables {CQ)J}JN:1 to be measured.

Expectation values:

£(0) = ((x)| U'(0)O;0(8) |(x)) . (1)

Loss function L:

L£(0) = L(A(0),--- , n(0)) (2)

4/28

Variational quantum circuits
Variational quantum circuits (VQCs) constist of:
1. An initial state |¢)(x)) depending on some data x.
2. A quantum circuit 0(9) depending on free parameters 6.
3. A set of observables {OJ}J’V:l to be measured.

Expectation values:

£(0) = ((x)| U'(0)O;0(8) |(x)) . (1)

Loss function L:

L£(0) = L(A(0),--- , n(0)) (2)

Goal: minimize £ by tuning 6.

4/28

1 U(6)

y ¥V v ¥

A

A

O;

O0— 0 —hVL(H)

Question: How to determine VL(0) efficiently?

How to determine gradients on a contentional computer?

Options:

6/28

How to determine gradients on a contentional computer?

Options:

1. Symbolic differentiation: using symboling computer algebra package

6/28

How to determine gradients on a contentional computer?

Options:

1. Symbolic differentiation: using symboling computer algebra package

2. Automatic differentiation: Builds computational graph, accumulates
intermediate derivative, uses the chain rule. (Very efficient)

6/28

How to determine gradients on a contentional computer?

Options:

1. Symbolic differentiation: using symboling computer algebra package

2. Automatic differentiation: Builds computational graph, accumulates
intermediate derivative, uses the chain rule. (Very efficient)

3. Numerical differentiation:

d _ f(x+ Ax/2) — f(x — Ax/2)
d—Xf(X)N A . (3)

6/28

How to determine gradients on a contentional computer?

Options:

1. Symbolic differentiation: using symboling computer algebra package

2. Automatic differentiation: Builds computational graph, accumulates
intermediate derivative, uses the chain rule. (Very efficient)

3. Numerical differentiation:

d _ f(x+ Ax/2) — f(x — Ax/2)
d—Xf(X)N A . (3)

Are these applicable to quantum circuits?

6/28

How to determine gradient on a quantum computer?

Options:

7/28

How to determine gradient on a quantum computer?
Options:

1. Symbolic differentiation: symbols cannot be handled X

7/28

How to determine gradient on a quantum computer?
Options:

1. Symbolic differentiation: symbols cannot be handled X

2. Automatic differentiation: intermediate derivatives cannot be stored X

7/28

How to determine gradient on a quantum computer?
Options:

1. Symbolic differentiation: symbols cannot be handled X
2. Automatic differentiation: intermediate derivatives cannot be stored X

3. Numerical differentiation: parameters can be shifted with a small amount

oi0(0) ~ L (BX 2)e;)A—XL(9 — (Ax/2)er). "

7/28

How to determine gradient on a quantum computer?
Options:

1. Symbolic differentiation: symbols cannot be handled X
2. Automatic differentiation: intermediate derivatives cannot be stored X

3. Numerical differentiation: parameters can be shifted with a small amount

oi0(0) ~ L (BX 2)e;)A—XL(9 — (Ax/2)er). "

Problems:
1. Near-term quantum devices are noisy.

2. The output is stochastic = we can only estimate the expectation values from
samples.

7/28

—— >

High errors of near-term quantum devices can make using finite difference formulas
inefficient.
8/28

Parameter shift rules
Parameter shift rules help us to estimate gradients better.

0if(0) =c[f(0+se)—f(0—se)],

where
> ¢ is some constant,
P s is the parameter shift, can be large.

9/28

Parameter shift rules
Parameter shift rules help us to estimate gradients better.

0if(0) =c[f(0+se))—f(0—sei)], (5)

where
> ¢ is some constant,
P s is the parameter shift, can be large.

Point: The shifts are larger, but the formula is still exact, and improves
sample-efficiency.

9/28

Parameter shift rules
Parameter shift rules help us to estimate gradients better.

0if(0) =c[f(0+se))—f(0—sei)], (5)

where
> ¢ is some constant,
P s is the parameter shift, can be large.

Point: The shifts are larger, but the formula is still exact, and improves
sample-efficiency.

Rough analogy: For
f(x) = sin(x) (6)

we can write
d 1 . .
e[() = 5 Isin(x + 7/2) +sin(x — 7/2)]. (7)

9/28

Continuous-variable quantum computing

10/28

Qubit-based vs. Continuous-variable quantum computation

Qubit-based Continuous-variable (CV)
Information unit Qubit Qumode
Hilbert space
dimension Finite Infinite
Basis states |0), 1) |0),1]1),2),13),--.

Elementary gates

Typical measurements

Hadamard, CNOT,
Pauli gates

Computational /Hadamard
basis measurements

Squeezing, Rotation,
Displacement

Particle number detection
Homodyne/heterodyne detection

11/28

CV quantum computing

We model qumodes by quantum har-
monic oscillators, and the states |0),

[1), |2), |3),... correspond to excitations
(particles).

S =

2
X

12/28

CV quantum computing

A
We model qumodes by quantum har- E \/\ /\ /|
monic oscillators, and the states |0), \/\U /\//
[1), |2), |3),... correspond to excitations 4 |
(particles). X/\ / |
|

A

In a sense, qubit-based quantum computation is “digital”, while CV quantum
computation is “analog”.

3
2
1

=]
= = =

12/28

CV quantum computing

sf\,. |

monic oscillators, and the states |0), \/\\/ /\// |
[1), |2), |3),... correspond to excitations W / |
(particles). |

A

In a sense, qubit-based quantum computation is “digital”, while CV quantum
computation is “analog”.

We model qumodes by quantum har-

3
2
1

=]
= = =

CV quantum states can also be described by quasidistributions over the phase space.

12/28

Linear gates
Roughly speaking, linear gates only squeeze, rotate and displace these distributions.

14/28

Linear gates
Roughly speaking, linear gates only squeeze, rotate and displace these distributions.

O-<>

» Squeezing S(r):

14/28

Linear gates

Roughly speaking, linear gates only squeeze, rotate and displace these distributions.

» Squeezing S(r):
dTD
> Rotation (or phaseshift) R(0) (particle number preserving)

0

—

14/28

Linear gates
Roughly speaking, linear gates only squeeze, rotate and displace these distributions.

O-<>

> Rotation (or phaseshift) R(0) (particle number preserving)

> — 0

» Squeezing S(r):

» Displacement D(r)

| 14/28

Parameter shift rules for CV quantum
circuits?

Applicable parameter shift rules so far

1. Circuits with only linear gates, no nonlinearities allowed [Mitarai'18, Schuld'18]

16/28

Applicable parameter shift rules so far

1. Circuits with only linear gates, no nonlinearities allowed [Mitarai'18, Schuld'18]

2. Circuits with only particle number-preserving linear gates (i.e., phaseshift
gates), but particle number-preserving nonlinearities are allowed [Facelli'24].

16/28

Applicable parameter shift rules so far

1. Circuits with only linear gates, no nonlinearities allowed [Mitarai'18, Schuld'18]

2. Circuits with only particle number-preserving linear gates (i.e., phaseshift
gates), but particle number-preserving nonlinearities are allowed [Facelli'24].

In this method, trigonometric interpolation is used: f(¢) depends on 0 as

where
» R oc number of particles,
» ¢, = determined via trigonometric interpolation.

16/28

Applicable parameter shift rules so far

1. Circuits with only linear gates, no nonlinearities allowed [Mitarai'18, Schuld'18]

2. Circuits with only particle number-preserving linear gates (i.e., phaseshift
gates), but particle number-preserving nonlinearities are allowed [Facelli'24].

In this method, trigonometric interpolation is used: f(¢) depends on 0 as

where
» R oc number of particles,
» ¢, = determined via trigonometric interpolation.

Calculating the derivative f'(0) is straightforward!

16/28

Applicable parameter shift rules so far

1. Circuits with only linear gates, no nonlinearities allowed [Mitarai'18, Schuld'18]

2. Circuits with only particle number-preserving linear gates (i.e., phaseshift
gates), but particle number-preserving nonlinearities are allowed [Facelli'24].

In this method, trigonometric interpolation is used: f(¢) depends on 0 as

where
» R oc number of particles,
» ¢, = determined via trigonometric interpolation.

Calculating the derivative f'(0) is straightforward!

Can we use similar interpolation techniques in CV circuits generally?

16/28

Interpolating phaseshift gates in CV circuits

Challenge: In the CV setup, the number of particles is usually not fixed.

17/28

Interpolating phaseshift gates in CV circuits
Challenge: In the CV setup, the number of particles is usually not fixed.

However: The contributions corresponding to higher particle numbers are “small” in
usual cases:

F(0) ~ F(0 Z cre™ (9)

k=—R

17/28

Interpolating phaseshift gates in CV circuits
Challenge: In the CV setup, the number of particles is usually not fixed.

However: The contributions corresponding to higher particle numbers are “small” in
usual cases:

R
F(0) = F(0) =) cre™ (9)

k=—R

Expectation: By increasing the degree of the trigonometric polynomial £, the distance
between f and f decreases sufficiently fast for optimization purposes.

17/28

Interpolating phaseshift gates in CV circuits
Challenge: In the CV setup, the number of particles is usually not fixed.

However: The contributions corresponding to higher particle numbers are “small” in
usual cases:

R
F(0) = F(0) =) cre™ (9)

k=—R

Expectation: By increasing the degree of the trigonometric polynomial £, the distance
between f and f decreases sufficiently fast for optimization purposes.

Observation: similar strategy works for the Kerr gate K(r) (a nonlinear particle
number-preserving gate) by increasing R.

17/28

Interpolating phaseshift gates in CV circuits
Challenge: In the CV setup, the number of particles is usually not fixed.

However: The contributions corresponding to higher particle numbers are “small” in
usual cases:

R
F(0) = F(0) =) cre™ (9)

k=—R

Expectation: By increasing the degree of the trigonometric polynomial £, the distance
between f and f decreases sufficiently fast for optimization purposes.

Observation: similar strategy works for the Kerr gate K(r) (a nonlinear particle
number-preserving gate) by increasing R.

Question: How do expectation values depend on the active linear gates?

17/28

Displacement gate interpolation
Denoting (n| D(r) |m) = D(r)n m, we can write the following recursion [Miatto'20]:
r

D(r)op = e " 72, D(r)n+10 = o 1D(f)n,0 ;
” (10)
D(r)ms1 = \/mlTl (VAD(F)n-t.m — rD(F)nm)

18/28

Displacement gate interpolation
Denoting (n| D(r) |m) = D(r)n m, we can write the following recursion [Miatto'20]:
r

2
D(r)oo=e""2, D(r), no
(r)010 e ’ (r) +1,0 = \/m () ,0
. (10)

D(r)n,m—i-l = \/m (ﬁD(r)n—l,m - rD(r)n,m)
and hence
g(r) == (1| D'(r)OD(r) [tho) = e™" ”Zw (ck € C) (11)

for a fixed state |1)g). Omitting high particle number contributions we get

g(r) =~ g(r) = p(r) e /2, p polynomial in r. (12)

18/28

Displacement gate interpolation
Denoting (n| D(r) |m) = D(r)n m, we can write the following recursion [Miatto'20]:

r

2
D(r)oo=e""2, D(r), no
(roo=ce ; (Nnt10 = NCES D(r)no w0
1
and hence
g(r) == (o] DT(r)OD(r) |1ho) = e~ " /2chr (ck € Q) (11)
for a fixed state |1)g). Omitting high particle number contributions we get
g(r) = g(r) = p(r) e "2, p polynomial in r. (12)

We can interpolate g(r) by polynomial interpolation of p(r).

18/28

Squeezing gate interpolation

Analogously, we can show that

h(r) = (0| ST(r)OS(r) o) = Z ck(tanh r)% 4 di(tanh r)¥ sechr (cx, dy € C).
k=0

(13)

19/28

Squeezing gate interpolation

Analogously, we can show that

h(r) = (0| ST(r)OS(r) o) = Z ck(tanh r)% 4 di(tanh r)¥ sechr (cx, dy € C).
k=0

(13)
Similarly, omitting high particle number contributions:

h(r) ~ h(r) := p(tanh r) + g(tanh r)sechr, (14)

where p and g are polynomials. As before, we can use polynomial interpolation.

19/28

Determining gradient via interpolation

So far: we can approximate gradients for many gates (Squeezing, Rotation,
Displacement, Kerr) using the interpolating polynomials.

20/28

Determining gradient via interpolation

So far: we can approximate gradients for many gates (Squeezing, Rotation,
Displacement, Kerr) using the interpolating polynomials.

Fact: Linear gates + Kerr gate = universality = high expressivity!

20/28

Determining gradient via interpolation

So far: we can approximate gradients for many gates (Squeezing, Rotation,
Displacement, Kerr) using the interpolating polynomials.

Fact: Linear gates + Kerr gate = universality = high expressivity!

However: numerical simulations show, that it might not be worth pursuing this
direction.

20/28

Determining gradient via interpolation

So far: we can approximate gradients for many gates (Squeezing, Rotation,
Displacement, Kerr) using the interpolating polynomials.

Fact: Linear gates + Kerr gate = universality = high expressivity!

However: numerical simulations show, that it might not be worth pursuing this
direction.

Question: Can we use the interpolating polynomials for something better?

20/28

Line search strategy

Basic idea

Idea [Nadori’25]: Instead of calculating gradients, use the minima from interpolating
polynomials!

22/28

Basic idea

Idea [Nadori’25]: Instead of calculating gradients, use the minima from interpolating

polynomials!
We sample parameters A € P({1,---,L}), where L is the number of parameters, and
then in each iteration step we modify the parameters 6; as
or i€ N,
04 ! (15)
0; i¢ N,

where 67 is the parameter-wise minimum determined via interpolation.

22/28

Simple example: Circle classifier

Consider a 2D binary classification datasets, with two circles, one contained in another:

D = {(x, yy e | (16)
N .-\':'::. ’..\!.L: 8%
¢..‘.. ’.\‘ .
where Yl -":-,,
> x(): data features, ulo® .3.'
. v %
» y() € {0,1}: associated labels. n ".
P .-"'.
-1.0 ° w‘,'h’?o

24 /28

Circuit

&>

0)4 D) H- S(r) A D(r3)R(0)AK (<)

I(U) I(U>)

0)4 D(z{") HA - S(ro)H L D(r) HR(0:)HEK (12

25 /28

Circuit

- — X2
0)4 D(=") HA ~S(r1) ~D(rs)HRODHE (s T
I(Uy) I(U,)
04 D) [HSC)H HPeHREO)HK ()]
We use mean-squared error (MSE) as loss function:
Nie)
£(6,D) = Ni S (FO.x0) — 0102y 1)) (17)

i=1

where (6, x()) is an expectation value of X.

25/28

—e— Finite difference (Ir=0.0025) —»<— Finite difference (Ir=0.005) —— Line search

100_

Loss

10—1_

1.54

1.0 1

0.5 1

Number of samples

0.0

0 5 10 15 20 25 30
Number of iterations

26 /28

—e— Finite difference (Ir=0.0025) —»<— Finite difference (Ir=0.005) —— Line search

100_

Loss

10—1_

1.54

1.0 1

0.5 1

Number of samples

0.0

0 5 10 15 20 25 30
Number of iterations

(lused PIQUASS O [ZK'25]) 2628

Outlook & Remaining questions

» This is very heuristic at this point! = we need to determine some guarantees
regarding the interpolation error.

27 /28

Outlook & Remaining questions

» This is very heuristic at this point! = we need to determine some guarantees
regarding the interpolation error.

» How does noise affect the optimization procedure?

27 /28

Outlook & Remaining questions

» This is very heuristic at this point! = we need to determine some guarantees
regarding the interpolation error.

» How does noise affect the optimization procedure?

» Comparison with other optimization methods, e.g., COBYLA or SPSA.

27 /28

Outlook & Remaining questions

» This is very heuristic at this point! = we need to determine some guarantees
regarding the interpolation error.

» How does noise affect the optimization procedure?
» Comparison with other optimization methods, e.g., COBYLA or SPSA.

» Adapt to maximum-mean discrepancy (MMD) and Kullback-Leibler (KL)
divergence as loss functions.

27 /28

Outlook & Remaining questions

» This is very heuristic at this point! = we need to determine some guarantees
regarding the interpolation error.

» How does noise affect the optimization procedure?
» Comparison with other optimization methods, e.g., COBYLA or SPSA.

» Adapt to maximum-mean discrepancy (MMD) and Kullback-Leibler (KL)
divergence as loss functions.

» Can we use the approximated gradients in training QPINNs?

27 /28

Outlook & Remaining questions

» This is very heuristic at this point! = we need to determine some guarantees
regarding the interpolation error.

» How does noise affect the optimization procedure?
» Comparison with other optimization methods, e.g., COBYLA or SPSA.

» Adapt to maximum-mean discrepancy (MMD) and Kullback-Leibler (KL)
divergence as loss functions.

» Can we use the approximated gradients in training QPINNs?

» Can this help mitigating barren plateaus?

27/28

Thank you for your attention!
)t ELTE HIUN

A*
Doy REN \UWIBAERT
Quantum Information
C National Laboratory
HUNGARY

Email: kolarovszki.zoltan@wigner.hun-ren.hu

28/28

mailto:kolarovszki.zoltan@wigner.hun-ren.hu

	Parameter shift rules
	Continuous-variable quantum computing
	Parameter shift rules for CV quantum circuits?
	Line search strategy

