

National Research, Development and Innovation Offici HUNGARY

Cosmological N-body Simulations of Rotating Universes

Balázs PÁL^{1,2}, Gábor RÁCZ³, Viola VARGA³, István SZAPUDI⁴

¹Department of Physics of Complex Systems, Eötvös Loránd University ²Heavy-ion Research Group, Wigner Research Centre for Physics ³Department of Physics, University of Helsinki ⁴Institute for Astronomy, University of Hawai'i

> XV. GPU Day – 2025 HUN-REN Center

Cosmology nowadays is a mess

Can Rotation Solve the Hubble Puzzle?

Balázs E. Szigeti, István Szapudi, Imre F. Barna, Gergely G. Barnaföldi (2025)

"[...] In various cosmogonical theories the rotation of planets has been explained as resulting from the rotation of stars from which they were formed. [...] But what is the origin of galactic rotation?"

- Rotating Universe? G. Gamov (1946)

Can Rotation Solve the Hubble Puzzle?

Balázs E. Szigeti, István Szapudi, Imre F. Barna, Gergely G. Barnaföldi (2025)

"[...] In various cosmogonical theories the rotation of planets has been explained as resulting from the rotation of stars from which they were formed. [...] But what is the origin of galactic rotation?"

- Rotating Universe? G. Gamov (1946)

w u(r(t),t) u(r(t),t)

Can Rotation Solve the Hubble Puzzle?

Balázs E. Szigeti, István Szapudi, Imre F. Barna, Gergely G. Barnaföldi (2025)

Can Rotation Solve the Hubble Puzzle?

Can Rotation Solve the Hubble Puzzle?

"But where are the simulations?"

What even are cosmological simulations?

What even are cosmological simulations?

Init. Condition

What even are cosmological simulations?

Snapshot #116 Snapshot #134 Snapshot #152 Snapshot #171 Snapshot #191

Rethinking the boundary conditions

Rethinking the boundary conditions

Rethinking the boundary conditions

Results of spherical simulations

Simulating Rotating Newtonian Universes – Pál et. al. (2025)

Gravitational force of a sphere

Gravitational force of a **cylinder**

Gravitational force of a sphere

Gravitational force of a cylinder

$$\mathbf{F}(r) = egin{cases} -rac{GMm}{r^2} \hat{\mathbf{r}}, & r \geq R, \ -rac{GMm}{R^3} r \hat{\mathbf{r}}, & 0 \leq r \leq R. \end{cases}$$

Gravitational force of a **sphere**

$$\mathbf{F}(r) = egin{cases} -rac{GMm}{r^2} \hat{\mathbf{r}}, & r \geq R, \ -rac{GMm}{R^3} r \hat{\mathbf{r}}, & 0 \leq r \leq R. \end{cases}$$

Gravitational force of a cylinder

$$F_{h} = \begin{cases} -2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}\right) dY \\ + G\rho \int_{0}^{R} \ln\left(\frac{R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}}{[L^{2}+2R^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}\right) dY \quad (a \neq R) \qquad (18) \\ - 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}+L}{[L^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}{[R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}+a}\right) dY(a > R) \end{cases}$$

$$F_{v} = \begin{cases} F_{v} = \begin{cases} 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}{[R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}+a}\right) dY(a > R) \end{cases}$$

$$F_{v} = \begin{cases} F_{v} = \begin{cases} 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}-R}{[L^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 4G\rho R \qquad (a = R) \end{cases}$$

$$F_{v} = \begin{cases} F_{v} = \begin{cases} 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}-R}{[L^{2}+2R^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 4G\rho R \qquad (a = R) \end{cases}$$

$$(19)$$

$$F_{v} = \begin{cases} 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}-A}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-A}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left([R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-A}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-A}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left([R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-A}{[L^{2}+R^{2}+A^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-A}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left([R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-A}{[L^{2}+R^{2}+A^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-A}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left([R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-A}{[L^{2}+R^{2}+A^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-A}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left([R^{2}+A^{2}-2a(R$$

Gravitational force of a sphere

$$\mathbf{F}(r) = egin{cases} -rac{GMm}{r^2} \hat{\mathbf{r}}, & r \geq R, \ -rac{GMm}{R^3} r \hat{\mathbf{r}}, & 0 \leq r \leq R. \end{cases}$$

Additional problems

Gravitational force of a cylinder

$$F_{h} = \begin{cases} -2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}\right) dY \\ + G\rho \int_{0}^{R} \ln\left(\frac{R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}}{R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}}\right) dY \quad (a \neq R) \end{cases}$$
(18
$$-2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}+L}{[L^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}{[R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left(\frac{[R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}+a}{[R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}{[L^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 4G\rho R \qquad (a = R) \end{cases}$$
(19)
$$F_{v} = \begin{cases} 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}\right) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a) dY \\ - 4G\rho R(\ln R-1) \qquad (a < R). \end{cases}$$

Gravitational force of a sphere

$$\mathbf{F}(r) = egin{cases} -rac{GMm}{r^2} \hat{\mathbf{r}}, & r \geq R, \ -rac{GMm}{R^3} r \hat{\mathbf{r}}, & 0 \leq r \leq R. \end{cases}$$

Additional problems

• Mixed boundary conditions

Gravitational force of a cylinder

$$F_{h} = \begin{cases} -2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}\right) dY \\ + G\rho \int_{0}^{R} \ln\left(\frac{R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}}{R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}}\right) dY \quad (a \neq R) \end{cases}$$
(18)
$$-2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}+L}{[L^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}-a}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}{[R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}+a}\right) dY(a > R) \end{cases}$$

$$F_{v} = \begin{cases} 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}{[R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}{[L^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 4G\rho R \qquad (a = R) \end{cases}$$

$$F_{v} = \begin{cases} 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left([R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a\right) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{$$

Gravitational force of a sphere

$$\mathbf{F}(r) = egin{cases} -rac{GMm}{r^2} \hat{\mathbf{r}}, & r \geq R, \ -rac{GMm}{R^3} r \hat{\mathbf{r}}, & 0 \leq r \leq R. \end{cases}$$

Additional problems

- Mixed boundary conditions
- Ewald summation is necessary, as the simulation otherwise collapses due to numerical effects

Gravitational force of a **cylinder**

Summ

H

$$E_{h} = \begin{cases} -2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]}\right) dY & (a \neq R) \\ + G\rho \int_{0}^{R} \ln\left(\frac{R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}}{[L^{2}+2R^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}\right) dY + \pi G\rho R & (a = R) \\ -2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}+L}{[L^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}+L}\right) dY + \pi G\rho R & (a = R) \end{cases}$$

$$\begin{cases} 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}{[R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}+a}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left(\frac{[R^{2}+a^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}+a}{[R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}-R}{[L^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 4G\rho R & (a = R) \end{cases}$$

$$2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}-R}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left([R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a\right) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a$$

Gravitational force of a sphere

$$\mathbf{F}(r) = egin{cases} -rac{GMm}{r^2} \hat{\mathbf{r}}, & r \geq R, \ -rac{GMm}{R^3} r \hat{\mathbf{r}}, & 0 \leq r \leq R. \end{cases}$$

Additional problems

- Mixed boundary conditions
- Ewald summation is necessary, as the simulation otherwise collapses due to numerical effects
- Ewald summation necessitates the force calculation for a finite cylinder instead of an infinite

Gravitational force of a **cylinder**

$$F_{h} = \begin{cases} -2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}\right) dY \\ + G\rho \int_{0}^{R} \ln\left(\frac{R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}}{R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}}\right) dY \quad (a \neq R) \quad (18) \\ - 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}+L}{[L^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}{[R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}+a}\right) dY(a > R) \\ + 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}+a}{[R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 4G\rho R \quad (a = R) \\ F_{v} = \begin{cases} 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}+a}{[L^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 4G\rho R \quad (a = R) \\ 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}-a}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left([R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a\right) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2$$

Gravitational force of a sphere

$$\mathbf{F}(r) = egin{cases} -rac{GMm}{r^2} \hat{\mathbf{r}}, & r \geq R, \ -rac{GMm}{R^3} r \hat{\mathbf{r}}, & 0 \leq r \leq R. \end{cases}$$

Additional problems

- Mixed boundary conditions
- Ewald summation is necessary, as the simulation otherwise collapses due to numerical effects
- Ewald summation necessitates the force calculation for a finite cylinder instead of an infinite
- Custom initial condition generation code is needed to create physically and numerically sensible ICs in a half-periodic, half-stereographic geometry

Gravitational force of a **cylinder**

Summ

H

$$E_{h} = \begin{cases} -2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]}\right) dY & (a \neq R) \\ + G\rho \int_{0}^{R} \ln\left(\frac{R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}}{[L^{2}+2R^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}\right) dY + \pi G\rho R & (a = R) \\ -2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}+L}{[L^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}{[R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}+a}\right) dY(a > R) \\ 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}+a}{[R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}-R}{[L^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 4G\rho R \qquad (a = R) \\ 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}\right) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{$$

Gravitational force of a sphere

$$\mathbf{F}(r) = egin{cases} -rac{GMm}{r^2} \hat{\mathbf{r}}, & r \geq R, \ -rac{GMm}{R^3} r \hat{\mathbf{r}}, & 0 \leq r \leq R. \end{cases}$$

Additional problems

- Mixed boundary conditions
- Ewald summation is necessary, as the simulation otherwise collapses due to numerical effects
- Ewald summation necessitates the force calculation for a finite cylinder instead of an infinite
- Custom initial condition generation code is needed to create physically and numerically sensible ICs in a half-periodic, half-stereographic geometry
- The effects of perturbation applied to a rotating setting is still unknown

Gravitational force of a **cylinder**

Summ

H

$$E_{h} = \begin{cases} -2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]}\right) dY & (a \neq R) \quad (18) \\ + G\rho \int_{0}^{R} \ln\left(\frac{R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}}{[L^{2}+2R^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}\right) dY + \pi G\rho R \quad (a = R) \\ - 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+L}{[L^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}{[R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}+a}\right) dY(a > R) \\ 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}+a}{[R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+2R^{2}+2R(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}-R}{[L^{2}+2R^{2}-2R(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-R}\right) dY \\ + 4G\rho R \quad (a = R) \\ 2G\rho \int_{0}^{R} \ln\left(\frac{[L^{2}+R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}-(R^{2}-Y^{2})^{1/2}-R}{[L^{2}+R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a}\right) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}+2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R^{2}-Y^{2})^{1/2}-a) dY \\ + 2G\rho \int_{0}^{R} \ln([R^{2}+a^{2}-2a(R^{2}-Y^{2})^{1/2}]^{1/2}+(R$$

Thank you for your attention!

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE HUNGARY

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE HUNGARY

StePS spherical rotating simulations

Measuring the expansion rate in a rotating simulation

